首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   850篇
  免费   49篇
耳鼻咽喉   4篇
儿科学   34篇
妇产科学   19篇
基础医学   108篇
口腔科学   26篇
临床医学   83篇
内科学   141篇
皮肤病学   19篇
神经病学   68篇
特种医学   27篇
外国民族医学   1篇
外科学   83篇
综合类   14篇
一般理论   2篇
预防医学   106篇
眼科学   8篇
药学   59篇
中国医学   4篇
肿瘤学   93篇
  2024年   3篇
  2023年   20篇
  2022年   49篇
  2021年   81篇
  2020年   44篇
  2019年   45篇
  2018年   52篇
  2017年   33篇
  2016年   22篇
  2015年   37篇
  2014年   42篇
  2013年   44篇
  2012年   70篇
  2011年   76篇
  2010年   32篇
  2009年   33篇
  2008年   43篇
  2007年   43篇
  2006年   30篇
  2005年   28篇
  2004年   20篇
  2003年   12篇
  2002年   24篇
  2001年   2篇
  2000年   1篇
  1998年   5篇
  1997年   1篇
  1995年   1篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1987年   1篇
排序方式: 共有899条查询结果,搜索用时 15 毫秒
1.
Intestinal malrotation in children is a rare aberration, due to a halt in the rotation and attachment of the primitive gut, it can be asymptomatic if the rotation terminates at 90 degrees, which manifests itself in unusual forms of appendicitis as in our observation, or dangerous in cases of inadequate common mesentery and worsened by small intestine volvulus. This 12-year-old boy experienced abdominal discomfort in the hypogastrium and left iliac fossa 4 days before admission. The pain had been developing in a feverish setting, and the clinical examination had revealed abdominal sensitivity. A biological inflammatory syndrome was detected throughout the biological workup, the CT scan allowed the diagnosis of acute appendicitis on a complete common mesentery, and the patient underwent a laparotomy appendectomy. Even though children frequently experience acute appendicitis in its conventional form, it is nevertheless highly challenging to identify in its atypical forms when intestinal malrotation is involved. An abdominopelvic CT scan is used to make the diagnosis, and appendectomy, preferably with laparoscopy, is the recommended course of action.  相似文献   
2.
3.
pp32r1 (ANP32C) is oncogenic and has been shown to be overexpressed in tumors of the breast, prostate, and pancreas. In this work we show that pp32 family proteins are able to bind to the sphingosine analog FTY720 (Finguimod). Molecular docking studies highlight that a conserved residue F136 is likely to be a key determinant of the FTY720 binding site on the pp32 leucine-rich repeat domain. Transduction of the renal carcinoma cell line ACHN or cervical cancer cell line HeLa with lentivirus expressing the oncogenic family member pp32r1 or a pp32r1Y140H functional mutant illustrated an enhanced resistance to FTY720 induced apoptosis. These findings highlight that certain cancers overexpressing pp32r1 or pp32r1 mutants are likely to demonstrate enhanced resistance to FTY720 treatment.  相似文献   
4.
Historically treated with surgery, current practice recommends anal carcinoma to be treated with a combination of chemotherapy and radiation. This review will examine the anatomy, modes of disease spread and recurrence, and evaluate the existing evidence for treatment options for these tumors. An in-depth examination of specific radiation therapy (RT) techniques—such as conventional 3D-conformal RT and intensity-modulated RT—will be discussed along with modern dose constraints. RT field arrangement, patient setup, and recommended gross and clinical target volume (CTV) contours will be considered. Areas in need of further investigation, such as the role in treatment for positron emission tomography (PET) will be explored.  相似文献   
5.
6.
Diabetes mellitus (DM) is generally being perceived as a problem of the developed world, but currently, people from developing countries like Bangladesh are suffering from chronic diseases of which diabetes is a major one. The aim of the study was to assess knowledge and self-care practice regarding diabetes among type 2 diabetes mellitus (T2DM) subjects. A cross-sectional study was conducted among 11,917 (age ≥?18 years, 4418 males and 7499 females) T2DM subjects attending the health care centers and hospitals in Dhaka (Capital) and also in the northern part of Bangladesh operated by the local diabetic association. Data were collected through interviewer-administered questionnaire. The levels of knowledge and self-care practice were measured by predefined scores, categorized as poor (<mean – 1 SD), average (mean?±?1 SD), and good (>mean?+?1 SD). Independent samples t test, ANOVA, and Pearson’s correlation were used to determine the association between different variables considering p value <?0.05. The mean (± SD) age (years) of the T2DM was 50?±?12. The proportion of “poor,” “average,” and “good” score for knowledge were 34%, 51%, and 15% and for that practice were 16%, 72%, and 12%, respectively. Knowledge was significantly associated with practice (r?=?0.299, p?=?0.001). The study reveals a difference between knowledge and self-care practice related to T2DM. T2DM health literacy program needs to be developed for better health promotion.  相似文献   
7.
Glucose-6-phosphate dehydrogenase (G6PD) deficiency may cause severe hyperbilirubinemia with bilirubin encephalopathy unless intervention is initiated. The aim of this study was to assess the efficacy of clofibrate in full term G6PD deficient neonates with jaundice. A randomized clinical trial study was performed in two groups of full-term G6PD deficient jaundiced neonates (clofibrate treated group, n = 21; control group, n = 19). Infants in the clofibrate group received a single oral dose of 100 mg/kg clofibrate, whereas control group received nothing. Both groups were treated with phototherapy. Serum total and direct bilirubin levels were measured at the onset of treatments, 16, 24 and 48 hours later. On enrollment, the mean total serum bilirubin (TSB) level in the clofibrate treated group was 18.40 +/- 2.41 and in the control group was 17.49 +/- 1.03 (p = 0.401). At 16, 24 and 48 hours of treatment, the mean TSB in the clofibrate group were 15.2 +/- 1.9, 12.6 +/- 2.4, and 10.1 +/- 2.4 and in the control group were 16.5 +/- 1.2, 13.3 +/- 2.2 and 11.4 +/- 2.4, respectively (p = 0.047). At 48 hours, 7 (33%) cases in the clofibrate group and one (5%) case in the control group were discharged with a TSB < 10 mg/dl (p = 0.031). No side effects were observed on serial examinations during hospitalization, or on the 1st and 7th days after discharge. The results show that clofibrate induces a faster decline in serum total bilirubin level, a shorter duration of phototherapy, and hospitalization with no side effects in full-term G6PD deficient neonates with jaundice.  相似文献   
8.

Introduction and objectives

The PARIS score allows combined stratification of ischemic and hemorrhagic risk in patients with ischemic heart disease treated with coronary stenting and dual antiplatelet therapy (DAPT). Its usefulness in patients with acute coronary syndrome (ACS) treated with ticagrelor or prasugrel is unknown. We investigated this issue in an international registry.

Methods

Retrospective multicenter study with voluntary participation of 11 centers in 6 European countries. We studied 4310 patients with ACS discharged with DAPT with ticagrelor or prasugrel. Ischemic events were defined as stent thrombosis or spontaneous myocardial infarction, and hemorrhagic events as BARC (Bleeding Academic Research Consortium) type 3 or 5 bleeding. Discrimination and calibration were calculated for both PARIS scores (PARISischemic and PARIShemorrhagic). The ischemic-hemorrhagic net benefit was obtained by the difference between the predicted probabilities of ischemic and bleeding events.

Results

During a period of 17.2 ± 8.3 months, there were 80 ischemic events (1.9% per year) and 66 bleeding events (1.6% per year). PARISischemic and PARIShemorrhagic scores were associated with a risk of ischemic events (sHR, 1.27; 95%CI, 1.16-1.39) and bleeding events (sHR, 1.14; 95%CI, 1.01-1.30), respectively. The discrimination for ischemic events was modest (C index = 0.64) and was suboptimal for hemorrhagic events (C index = 0.56), whereas calibration was acceptable for both. The ischemic-hemorrhagic net benefit was negative (more hemorrhagic events) in patients at high hemorrhagic risk, and was positive (more ischemic events) in patients at high ischemic risk.

Conclusions

In patients with ACS treated with DAPT with ticagrelor or prasugrel, the PARIS model helps to properly evaluate the ischemic-hemorrhagic risk.  相似文献   
9.
The development of new non-platinum catalysts for alcohol electrooxidation is of utmost importance. In this work, a bimetallic Pd–Cu loaded porous carbon material was first synthesized from a Cu-based metal–organic framework (MOF). The Cu loaded porous carbon was pre-synthesized through calcinating the Cu-based MOF under a N2 atmosphere. After loading Pd onto the precursor and heating, Pd–Cu loaded porous carbon (Pd–Cu/C) was obtained for alcohol electrooxidation. Electrooxidation experiments revealed that this Pd–Cu bimetal loaded porous carbon assisted steady state electrolysis for alcohol oxidation in alkaline media. Moreover, different alcohols were electrooxidated using the present electrocatalyst for the purposes of discussing the oxidation mechanism. This electrooxidation study of Pd–Cu/C derived from a MOF demonstrates a good understanding of the electrooxidation of different alcohols, and provides useful guidance for developing new electrocatalyst materials for energy conversion and electronic devices.

We have synthesized Pd–Cu NP loaded porous carbon through the direct carbonization of a porous Cu based MOF for efficient electrooxidation.

There is an immediate need to develop direct alcohol fuel cells (DAFCs), which have been proven to be a fine source of energy, which could probably replace fossil fuels use to fulfil global energy demand. As one of the most significant electrocatalytic procedures, the electrooxidation of alcohols is an important process in DAFCs, and has gathered much attention and is attractive, due to high power density output and low pollutant emissions. Generally, Pt based materials are the most common electrocatalysts for alcohol electrooxidation reactions. However, the high cost and limited supply of Pt severely restricts its commercial application. Therefore, the development of new efficient and inexpensive non-platinum alternative materials to Pt-based catalysts is of utmost importance.Metal–organic frameworks (MOF) are assembled from metal ions linked by organic ligands, and are used in catalysis, guest molecule storage/separation, fluorescence, sensors and other devices.1–3 Due to their highly ordered porous structures and large surface areas, MOFs can also be used as templates/precursors for preparing porous carbon materials through thermal treatment.4–8 Several MOF derived carbon materials with good electrical conductivity are reported to show effective electrocatalytic performance,9 such as in the oxygen evolution reaction (OER),10 hydrogen evolution reaction (HER),11 and oxygen reduction reaction (ORR).12 Recently, a zeolitic imidazolate framework ZIF-8 was calcinated in order to prepare porous carbon with both micro- and meso-pores to support Pd electrocatalysts for methanol electrooxidation.13 Unfortunately, this could not efficiently limit the use of the noble metal, which gives challenges to scientists for further exploration.It has been demonstrated that the alloying of noble metals with transition metals has been used for the enhancement of catalytic activity and reduction of cost,14 because of the low cost and relatively high abundance of transition metals. The use of alloyed metal, Pd–M (where M is Cu, Co or Ni), binary electrocatalysts has been reported for effectively improving the catalytic properties.15–17 For this purpose, introducing a non-noble metal into a noble metal bimetallic system will fulfil the demand for a new catalyst and become an area of interest nowadays. The second metal (such as Cu) will behave as a donor, while Pd has an empty d orbital to accept electrons, and it is assumed that its electronic properties will be more similar to Pt.18 Therefore, Pd–Cu bimetal loaded porous carbon derived from a Cu-MOF can provide a good electrocatalyst for alcohol oxidation.In this work, as shown in Scheme 1, we have synthesized Cu loaded porous carbon through the direct carbonization of a porous Cu based MOF. After loading Pd onto the precursor and heating, Pd–Cu bimetal loaded porous carbon (Pd–Cu/C) was obtained. Chronoamperometric studies revealed that this Pd–Cu bimetal loaded porous carbon assisted steady state electrolysis for alcohol oxidation in alkaline media. In addition, alcohols with different numbers of carbon atoms (such as ethanol, 1-propanol and 2-propanol) were also investigated for electrooxidation. It is important to note that the effectiveness of this bimetallic NP loaded carbon means that it can serve as a catalyst for the electrooxidation of low-molecular weight alcohols, which probably can be used as energy sources in portable electronic devices.Open in a separate windowScheme 1The preparation procedure for Pd–Cu/C derived from HKUST-1 and PdCl2: (a) MOF HKUST-1; (b) Cu/C calcinated from HKUST-1; (c) PdCl2 loaded on Cu/C; and (d) the Pd–Cu/C material.Here, a 3-D MOF, HKUST-1 (also called Cu3(BTC)2, BTC = 1,3,5-benzenetricarboxylate), was chosen as the precursor for preparing the Cu/C material, due to the structure having high porosity and it being a rich Cu source. The as-synthesized HKUST-1 was calcinated at 700 °C for 5 h under a N2 atmosphere, and the Cu/C material was obtained. In addition, the guest species PdCl2 was loaded onto the calcinated HKUST-1 through immersing the pre-calcinated HKUST-1 into a PdCl2 ethanolic solution (1 mM) for 2 h (Scheme 1). The PdCl2 loaded Cu/C (PdCl2@Cu/C) was heated at 300 °C for 1 h under a N2 atmosphere. Finally, an alloy of Pd and Cu loaded porous carbon material (Pd–Cu/C) was obtained and characterized through powder XRD, BET and XPS analyses.The PXRD data (Fig. 1a) from as-synthesized HKUST-1 powder and the bimetallic Pd–Cu NP loaded carbon porous material derived from HKUST-1 show that the samples contain bimetallic palladium and copper mostly. The XRD peak appearing at 43.3° corresponds to the (fcc) (111) facet plane of Cu. Due to Pd being dispersed homogenously at a low concentration through the sample, the XRD pattern could not display the obvious peak from Pd. However, inductively coupled plasma emission spectroscopy (ICP) data (Table S1) from the sample showed 0.76% Pd and 36.68% Cu, indicating the existence of Pd and Cu. The porosity of Pd–Cu/C was demonstrated through BET data, which shows N2 adsorption of ∼150 cm3 g−1. The Pd XPS spectrum showed two definite peaks at 335.5 and 341 eV, respectively assigned to 3d5/2 and 3d3/2 and matching well with Pd0. XPS peaks at 932.4 and 952.1 eV indicate the valence states of Cu ions in the Cu 2p3/2 and Cu 2p1/2 orbitals in the Pd–Cu/C material. Cu2+ is present in the porous carbon material, with respective peaks at 933.7 eV and 934.4 eV from CuO and Cu(OH)2, with a prominent satellite observed in the 938–946 eV range. A few Pd2+ ions also exist in the sample due the easy oxidation of the surface. The Raman spectrum of Pd–Cu/C (Fig. S4) shows typical graphitic carbon. The results of the characterization studies clearly reveal that the nanoparticles have a Pd and Cu bimetallic nature.Open in a separate windowFig. 1(a) XRD data from HKUST-1 and Pd–Cu/C; (b) N2 sorption isotherms for Pd–Cu/C; and XPS data from (c) Pd and (d) Cu in a sample of Pd–Cu/C.SEM images with EDS (Fig. 2a and b) results show that the sample contained much more copper than palladium, which clearly suggests that the presence of copper in the sample would probably be the reason for the expected electrooxidation of alcohols. It could be possible to replace the use of high-cost Pd or Pt based catalysts. The morphology of the Pd–Cu NPs was further characterized via TEM imaging and TEM element mapping (Fig. 2c, d and S5), demonstrating that the nano-sized NPs were dispersed homogeneously. The HR-TEM image in Fig. 2c gives insight into the bimetallic nature of the synthesized nanoparticles, with two noticeable lattice fringes (0.225 nm for Pd(111) and 0.202 nm for Cu(111)). The mean size of the Pd–Cu NPs was 7.38 nm, as shown in Fig. 2d. The homogenous distribution, with well-defined bimetallic Pd–Cu based carbon material, was good for the electrooxidation of alcohols. The electrochemical active surface area (ECSA) for Pd–Cu/C was high compared with commercial Pd/C, which suggested that the synthesized Pd–Cu/C has ample available surface area, mainly because of synergistic effects from the Cu-MOF based carbon material and the morphology of the electrocatalyst.Open in a separate windowFig. 2(a) SEM image of and (b) EDS data from Pd–Cu/C; (c) a TEM image of Pd–Cu NPs in the hybrid carbon material; and (d) the size distribution of the Pd–Cu NPs.In Fig. 3, CV profiles for commercial Pd/C and the presented Pd–Cu/C show two distinct peaks (forward (iF) and backward (iB) peaks) during the oxidation of methanol-containing 1 M KOH solution. The peak at −0.37 V indicates the oxidation of aforementioned carbonaceous species, such as Pd–COads, along with newly formed alcohol adsorbates, following the removal of surface intermediates at lower potentials.19 For the forward peak potential, a shift in the iF value is observed, mainly because of Cu existing with Pd in the material. This results in the oxidation of poisonous species, such as Pd adsorbed CO, at higher potentials,20 leading to such high activity. ATR-IR (Fig. S7) and GC analyses (Fig. S8) show the methanol oxidation reaction (MOR) pathway during the formation of the final CO2 product. The catalytic activity of Pd–Cu/C is found to be ∼13 times higher than commercial Pd/C for methanol oxidation, demonstrating that the presence of Cu with Pd in Pd–Cu based catalysts increases CO oxidation because of a strong binding ability. Cu binds to CO more strongly than Pd, as a result of electronic structure differences,21,22 thus preventing the electrode from undergoing CO poisoning, a major issue for Pd-based catalysts during the methanol oxidation reaction (MOR). The mechanism of methanol oxidation is shown in the ESI (eqn (8)–(10)). The high iF value for Pd–Cu/C can be ascribed to the fast formation of reactive intermediates, such as Pd–CH2OH, Pd–COOH, Pd–H, Pd–(CHO)ads, and Pd–(COOH)ads.23–25 The removal of these intermediates is necessary for a high current density. Furthermore, formaldehyde (HCHO), formic acid (HCOOH) and CO2 would be the final products in the MOR.26,27 Pd–Cu/C has good catalytic activity for the MOR, leading to further investigation into the electrooxidation of different alcohols, such as ethanol, 1-propanol, and 2-propanol (Fig. 4 and Table S2).Open in a separate windowFig. 3CV curves from Pd/C and Pd–Cu/C electrocatalysts during CH3OH (1 M) oxidation in 1 M KOH solution, at a scan rate of 50 mV s−1, at room temperature.Open in a separate windowFig. 4(a) CV curves from: the Pd–Cu/C electrocatalyst for C1–C3 aliphatic alcohol (1 M) oxidation in KOH (1 M) solution; and (b) Pd–Cu/C in 1 M EtOH, 1-propanol and 2-propanol at a scan rate of 50 mV s−1 at room temperature.The current densities for different alcohol oxidation processes are summarized in Fig. 4a and b. The normalized iF (calculated using Pd mass) for the MOR (∼4643 mA mg−1) was higher than for three other alcohols, i.e., it was ∼139, ∼94 and ∼26.5 mA mg−1 for ethanol, 1-propanol and 2-propanol, respectively. The iF/iB ratio for methanol is ∼12 times higher than that for ethanol, ∼13 times that for 1-propanol and ∼4 times that for 2-propanol. The reactivity order for Pd–Cu/C is methanol > ethanol > 1-propanol > 2-propanol. 2-Propanol electrooxidation showed a lower current density on a Pd–Cu/C electrode in alkaline medium, although iF/iB is ∼5.4. The negative shift in the onset of the ethanol oxidation reaction (EOR) suggested that a high copper content with very low amount of Pd was suitable for EOR kinetics using a Pd–Cu/C catalyst. The ethoxy (CH3CO)ads was strongly adsorbed, and blocked hydrogen absorption/adsorption. The current intensity of iF increased due to the formation of fresh Pd–OH, through stripping carbonaceous residue from the electrode (eqn (11)–(14)). In addition, the increased current at high potentials sharply reached the largest value then started to decline, because a PdO layer formed on the electrode, blocking the further adsorption of reactive species.28 ATR-IR spectra (Fig. S9) show the presence of CO2 and COads, whereas bands appear at 1670 cm−1 and 1390 cm−1 because of the formation of acetic acid.29 The Pd–Cu/C electrocatalyst has the potential to oxidize the intermediate to the final product, CO2, during EOR to some extent; Cu promotes oxidation through increasing the production of OHads/H2O to eliminate the intermediate CH3COads simultaneously on Pd.30 The stability of Pd–Cu/C in all four alcohols (methanol, ethanol, 1-propanol and 2-propanol) was studied using chronoamperometry at a potential of −0.25 V, as shown in Fig. S2. The slow current decay showed that the stability of the Pd–Cu/C electrocatalyst in methanol is best. Comparing the results, the current for methanol oxidation was higher than that for the other three alcohols. However, the oxidation currents from ethanol and 1-propanol were larger than that from 2-propanol. This suggested that Pd–Cu/C is less stable and shows lower anti-poisoning ability during 2-propanol oxidation in an alkaline medium.During this oxidation, 1-propanol oxidizes to propanal first, and its further oxidation results in the formation of a stable product, propanoic acid (Scheme S1). 1-Propanol is converted, with its carboxylate as the major product, as verified using ATR-IR (Fig. S10). 2-Propanol forms acetone as an intermediate product, leading to the poisoning of the electrode.31 ATR-IR spectra (Fig. S11) of Pd–Cu/C also confirm that the electrocatalyst follows a dual pathway through acetone and propene intermediates to oxidize to CO2 finally (Scheme S2).32–34 However, acetone formation is kinetically favored.35 The results show that the location of the –OH group in the alcohol influences the electrooxidation reaction kinetics. In contrast methanol oxidation using Pd–Cu/C has much higher catalytic activity than ethanol, 1-propanol and 2-propanol oxidation, which makes it a good candidate for direct methanol fuel cells.In summary, we have first synthesized a bimetallic Pd–Cu NP loaded porous carbon material from a Cu-based MOF for alcohol electrooxidation. The Cu loaded porous carbon was pre-synthesized by calcinating the Cu-based MOF HKUST-1 under a N2 atmosphere. Afterwards, Pd–Cu NP loaded porous carbon was obtained for alcohol electrooxidation. Electrooxidation experiments revealed that Pd–Cu/C was suitable for steady state electrolysis for alcohol oxidation in alkaline media. In addition, different alcohols were electrooxidated using the present electrocatalyst to discuss the oxidation mechanism. This electrooxidation study of Pd–Cu/C derived from a MOF offers good understanding into the electrooxidation of different alcohols and it could provide useful guidance for the development of new electrocatalyst materials.  相似文献   
10.

Background

Cardiopulmonary resuscitation (CPR) is a key component of emergency care following cardiac arrest. A better understanding of factors that influence CPR outcomes and their prognostic implications would help guide care. A retrospective analysis of 800 adult patients that sustained an in- or out-of-hospital cardiac arrest and underwent CPR in the emergency department of a tertiary care facility in Karachi, Pakistan, between 2008 and 15 was conducted.

Methods

Patient demographics, clinical history, and CPR characteristics data were collected. Logistic regression model was applied to assess predictors of return of spontaneous circulation and survival to discharge. Analysis was conducted using SPSS v.21.0.

Results

Four hundred sixty-eight patients met the study’s inclusion criteria, and overall return of spontaneous circulation and survival to discharge were achieved in 128 (27.4%) and 35 (7.5%) patients respectively. Mean age of patients sustaining return of spontaneous circulation was 52 years and that of survival to discharge was 49 years. The independent predictors of return of spontaneous circulation included age ≤?49 years, witnessed arrest, ≤?30 min interval between collapse-to-start, and 1–4 shocks given during CPR (aOR (95% CI) 2.2 (1.3–3.6), 1.9 (1.0–3.7), 14.6 (4.9–43.4), and 3.0 (1.4–6.4) respectively), whereas, age ≤?52 years, bystander resuscitation, and initial rhythm documented (pulseless electrical activity and ventricular fibrillation) were independent predictors of survival to discharge (aOR (95% CI) 2.5 (0.9–6.5), 1.4 (0.5–3.8), 5.3 (1.5–18.4), and 3.1 (1.0–10.2) respectively).

Conclusion

Our study notes that while the majority of arrests occur out of the hospital, only a small proportion of those arrests receive on-site CPR, which is a key contributor to unfavorable outcomes in this group. It is recommended that effective pre-hospital emergency care systems be established in developing countries which could potentially improve post-arrest outcomes. Younger patients, CPR initiation soon after arrest, presenting rhythm of pulseless ventricular tachycardia and ventricular fibrillation, and those requiring up to four shocks to revive are more likely to achieve favorable outcomes.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号