首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93篇
  免费   11篇
儿科学   3篇
妇产科学   3篇
基础医学   19篇
临床医学   7篇
内科学   21篇
皮肤病学   13篇
神经病学   4篇
外科学   14篇
预防医学   3篇
眼科学   6篇
药学   6篇
肿瘤学   5篇
  2023年   2篇
  2022年   1篇
  2021年   4篇
  2019年   2篇
  2018年   2篇
  2017年   7篇
  2016年   4篇
  2015年   6篇
  2014年   11篇
  2013年   5篇
  2012年   12篇
  2011年   8篇
  2010年   1篇
  2009年   1篇
  2008年   9篇
  2007年   2篇
  2006年   4篇
  2005年   4篇
  2004年   9篇
  2003年   3篇
  2002年   1篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
排序方式: 共有104条查询结果,搜索用时 31 毫秒
1.
The OPA1 gene, encoding a dynamin-related GTPase that plays a role in mitochondrial biogenesis, is implicated in most cases of autosomal dominant optic atrophy (ADOA). Sixty-nine pathogenic OPA1 mutations have been reported so far. Most of these are truncating mutations located in the GTPase domain coding region (exons 8-16) and at the 3'-end (exons 27-28). We screened 44 patients with typical ADOA using PCR-sequencing. We also tested 20 sporadic cases of bilateral optic atrophy compatible with ADOA. Of the 18 OPA1 mutations found, 14 have never been previously reported. The novel mutations include one nonsense mutation, 3 missense mutations, 6 deletions, one insertion and 3 exon-skipping mutations. Two of these are de novo mutations, which were found in 2 patients with sporadic optic atrophy. The recurrent c.2708_2711delTTAG mutation was found in 2 patients with a severe congenital presentation of the disease. These results suggest that screening for OPA1 gene mutations may be useful for patients with optic atrophy who have no affected relatives, or when the presentation of the disease is atypical as in the case of early onset optic atrophy.  相似文献   
2.
Computer-assisted image analysis is useful for quantifying the histologic and molecular changes of sun-induced squamous cell carcinoma progression. We used the CAS 200 image analysis system to measure nuclear morphometric parameters, p53 expression, and proliferation markers in actinic keratosis (AK), sun-exposed, and normal skin in 51 patients. Nuclear morphometry revealed significant increases in nuclear absorbance, irregularity of nuclear shape, and nuclear size in AK compared with normal and sun-damaged skin. These parameters showed significantly greater variability in AK nuclei. Argyrophyllic nucleolar organizer area and number were also significantly greater in AK compared with sun-damaged skin and normal skin. Ki67 and p53 expressions were both increased in sun-damaged skin relative to normal and greater still in AK. These data are evidence that sun damage induces proliferation and p53 abnormalities before the appearance of nuclear abnormalities and their associated DNA instability. Following these changes during a skin cancer chemopreventative trial can then help assess the efficacy of the agent and help determine where in the progression of neoplastic changes it exerts its biological effects.  相似文献   
3.
OBJECTIVE: We have previously reported that hearts from N-[omega]-nitro-L-arginine methyl ester (L-NAME)-induced hypertensive rats exhibited an enhanced expression of Gi proteins. Since, losartan, an AT1 receptor antagonist, has been shown to attenuate the L-NAME-induced increase in blood pressure, we undertook the present studies to evaluate whether losartan-induced decreased blood pressure in this model of hypertension is associated with attenuation of enhanced expression of Gi proteins and adenylyl cyclase signalling. METHODS: L-NAME (70 mg/kg body weight) and losartan (10 mg/kg body weight), alone or in combination, were given orally to Sprague-Dawley rats for 4 weeks. The control rats received only plain tap water. The levels of inhibitory guanine nucleotide regulatory proteins (Gi alpha-2 and Gi alpha-3) and stimulatory (Gs alpha) proteins and Gi alpha mRNA in hearts were determined by immunoblotting and Northern blotting, respectively. Adenylyl cyclase activity was determined by measuring [32P]cAMP formation from [32P]ATP. RESULTS: Systolic blood pressure was enhanced in L-NAME-treated rats compared to control rats (164 +/- 5.2 versus 105 +/- 2 mmHg; n = 30), and was significantly attenuated by losartan treatment (164 +/- 5.2 mmHg versus 120 +/- 2.5 mmHg; n = 30). The expression of Gi alpha-2 and Gi alpha-3 proteins and their mRNA, which was enhanced in L-NAME-treated rats, was reversed by losartan treatment. However, losartan alone did not alter the levels of Gs alpha or Gi alpha proteins. In addition, the stimulatory effects of guanosine 5'-gamma-thiotriphosphate (GTPgammaS), isoproterenol, 5'-N-ethylcarboxamideadenosine (NECA), glucagon, forskolin (FSK) and sodium fluoride (NaF) on adenylyl cyclase, which were diminished in L-NAME-treated rats, were reversed by losartan treatment. Furthermore, the inhibition of forskolin-stimulated enzyme activity by low concentrations of GTPgammaS (receptor-independent Gi functions), which was significantly enhanced in L-NAME-treated rats, was attenuated by losartan treatment. In addition, losartan was able to reverse the attenuated receptor-mediated inhibitions of adenylyl cyclase by oxotremorine and angiotensin II towards control. CONCLUSIONS: These results suggest the implication of AT1 receptors in enhanced expression of Gi alpha proteins and increased blood pressure in L-NAME-induced hypertension.  相似文献   
4.
OBJECTIVE: We have recently shown a decreased expression of Gialpha proteins and associated functions in aorta from short term (5 days) streptozotocin-induced diabetic rats. Since hyperglycemia is one of the underlying causes of diabetes-induced cardiovascular complications, it was of interest to examine if hyperglycemia may play a direct role in down regulating the expression of Gialpha in vascular smooth muscle cells of diabetic subjects. For this, the effect of high glucose treatment on Gialpha protein expression and adenylyl cyclase signaling in intact aorta and vascular smooth muscle cells (A10 cells) was investigated. METHODS: The cells were grown in normal glucose (5.5 mM) medium and were subsequently exposed to high glucose (26 mM) or normal medium for various time periods (24-96 h). Aorta from control rats were exposed to normal and high glucose medium for 72 h. The levels of G-proteins were determined by immunoblotting using specific antibodies. Adenylyl cyclase activity stimulated or inhibited by agonists was determined to examine the functions of G-proteins. RESULTS: The levels of Gialpha-2 and Gialpha-3 proteins in membranes from A10 cells and aorta exposed to high glucose for 3 or 4 days were significantly decreased as compared to control cells and control aorta, respectively, whereas the levels of Gsalpha protein were not altered. In addition, receptor-dependent and -independent functions of Gialpha proteins were attenuated in hyperglycemic cells, as demonstrated by inhibition of forskolin (FSK)-stimulated adenylyl cyclase activity by low concentration of GTPgammaS or by angiotensin II (Ang II), oxotremorine or C-ANP(4-23) (a ring deleted analog of atrial natriuretic peptide). On the other hand, the stimulatory effects of GTPgammaS, glucagon, isoproterenol, FSK and sodium fluoride on adenylyl cyclase were significantly augmented in hyperglycemic cells as compared to control cells, whereas basal adenylyl cyclase activity was significantly lower in hyperglycemic cells as compared to control cells. CONCLUSION: These results indicate that high glucose decreased the levels and functions of Gi proteins in A10 VSMC and aorta. It may thus be suggested that decreased levels and activity of Gi proteins and adenylyl cyclase signaling induced by hyperglycemia may be one of the important mechanisms contributing to the cardiovascular complications associated with diabetes.  相似文献   
5.
BACKGROUND: We have previously shown the long-term influence of renal ischemia/reperfusion (I/R) injury and immunosuppression on fibrotic genes and apoptosis in a rat model. For the first time, we have now investigated the effects of I/R and immunosuppression on inflammation and caspase activation. METHODS: I/R injury was induced in the right kidney and the left was removed. Cyclosporin (CsA) (10 mg/kg), tacrolimus (0.2 mg/kg), rapamycin (1 mg/kg), or mycophenolate mofetil (MMF) (10 mg/kg) was then administered for 16 weeks. The effects of I/R and immunosuppressants on interstitial inflammation, interleukin (IL)-1beta expression, caspase-1 and caspase-3 activation, tubulointerstitial damage, and fibrosis were evaluated. RESULTS: ED-1+ (a specific rat monocyte/macrophage marker) cells were mainly localized in the tubulointerstitium and periglomerular areas and increased in I/R group compared to controls (P < 0.01). This was further increased by CsA, but decreased by tacrolimus, rapamycin, or MMF (P < 0.05). The 17 kD active IL-1beta remained unchanged, but 35 kD IL-1beta precursor was decreased by rapamycin in comparison with I/R group (P < 0.05). The 45 kD or 20 kD caspase-1 was increased by I/R or CsA, respectively, and decreased by rapamycin (P < 0.05). The 24 kD caspase-3, which proved to be an active caspase-3 subunit, was increased in I/R and CsA groups and deceased by tacrolimus, rapamycin, or MMF (P < 0.05), but not 32 kD precursor or 17 kD active caspase-3. The activity data of caspase-1 and caspase-3 exhibited the same trend as Western blotting data. The staining of active caspase-3 was scattered in kidneys, mainly in tubular and interstitial areas, which was consistent with that of ED-1+ cells. There was a strong positive correlation between interstitial inflammation and 24 kD caspase-3 expression or caspase-3 activity (r = 0.814 or 0.484), all of which were also closely related with urinary protein (r = 0.537, 0.529, or 0.517), serum creatinine (r = 0.463, 0.573, or 0.539), tubulointerstitial damage (r = 0.794, 0.618, or 0.712) and fibrosis (r = 0.651, 0.567, or 0.469), all P < 0.01. CONCLUSION: This study shows that the mechanisms of long-term I/R injury and immunosuppressants treatment include interstitial inflammation and caspase activation, most clearly demonstrated by the 24 kD active caspase-3.  相似文献   
6.
7.
Autism is a neuro-developmental syndrome that affects 0.1-0.5% of the population. It has been proposed that alterations in neuronal circuitry and/or neuronal signaling are responsible for the behavioral and cognitive aberrations in autism patients. However, the cellular basis of such alterations is unknown. Recently, point mutations in a family of neuronal cell adhesion molecules called neuroligins have been linked to autism-spectrum disorders and mental retardation. We investigated the consequences of these disease-associated mutations on neuroligin function. We demonstrate that the point mutation at arginine 451 and a nonsense mutation at aspartate 396 of neuroligin-3 and -4 (NL3 and NL4), respectively, result in intracellular retention of the mutant proteins. Over-expression of wild-type NL3 and NL4 proteins in hippocampal neurons stimulates the formation of presynaptic terminals, whereas the disease-associated mutations result in a loss of this synaptic function. Our findings suggest that the previously identified mutations in neuroligin genes are likely to be relevant for the neuro-developmental defects in autism-spectrum disorders and mental retardation since they impair the function of a synaptic cell adhesion molecule.  相似文献   
8.
Inflammation - The novel coronavirus SARS-CoV-2, responsible for the COVID-19 outbreak, has become a pandemic threatening millions of lives worldwide. Recently, several vaccine candidates and drugs...  相似文献   
9.
10.
Nitric oxide (NO) in nanomolar (nmol/L) concentrations is consistently detected in tumor microenvironment and has been found to promote tumorigenesis. The mechanism by which NO enhances tumor progression is largely unknown. In this study, we investigated the possible mechanisms and identified cellular targets by which NO increases proliferation of human breast cancer cell lines MDA-MB-231 and MCF-7. DETA-NONOate, a long acting NO donor, with a half-life of 20 h, was used. We found that NO (nmol/L) dramatically increased total protein synthesis in MDA-MB-231 and MCF-7 and also increased cell proliferation. NO specifically increased the translation of cyclin D1 and ornithine decarboxylase (ODC) without altering their mRNA levels or half-lives. Critical components in the translational machinery, such as phosphorylated mammalian target of rapamycin (mTOR) and its downstream targets, phosphorylated eukaryotic translation initiation factor and p70 S6 kinase, were up-regulated following NO treatment, and inhibition of mTOR with rapamycin attenuated NO induced increase of cyclin D1 and ODC. Activation of translational machinery was mediated by NO-induced up-regulation of the Raf/mitogen-activated protein/extracellular signal-regulated kinase (ERK) kinase/ERK (Raf/MEK/ERK) and phosphatidylinositol 3-kinase (PI-3 kinase)/Akt signaling pathways. Up-regulation of the Raf/MEK/ERK and PI-3 kinase/Akt pathways by NO was found to be mediated by activation of Ras, which was cyclic guanosine 3',5'-monophosphate independent. Furthermore, inactivation of Ras by farnesyl transferase inhibitor or K-Ras small interfering RNA attenuated NO-induced increase in proliferation signaling and cyclin D1 and ODC translation, further confirming the involvement of Ras activation during NO-induced cell proliferation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号