首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   2篇
基础医学   4篇
口腔科学   17篇
内科学   5篇
神经病学   1篇
特种医学   1篇
预防医学   1篇
  2019年   2篇
  2018年   1篇
  2014年   2篇
  2012年   2篇
  2011年   2篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2000年   2篇
  1997年   1篇
  1995年   1篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1988年   2篇
  1985年   1篇
排序方式: 共有29条查询结果,搜索用时 46 毫秒
1.
We studied cross-reactive antibodies against avian influenza H5N1 and 2009 pandemic (p) H1N1 in 200 serum samples from US military personnel collected before the H1N1 pandemic. Assays used to measure antibodies against viral proteins involved in protection included a hemagglutination inhibition (HI) assay and a neuraminidase inhibition (NI) assay. Viral neutralization by antibodies against avian influenza H5N1 and 2009 pH1N1 was assessed by influenza (H5) pseudotyped lentiviral particle-based and H1N1 microneutralization assays. Some US military personnel had cross-neutralizing antibodies against H5N1 (14%) and 2009 pH1N1 (16.5%). The odds of having cross-neutralizing antibodies against 2009 pH1N1 were 4.4 times higher in subjects receiving more than five inactivated whole influenza virus vaccinations than those subjects with no record of vaccination. Although unclear if the result of prior vaccination or disease exposure, these pre-existing antibodies may prevent or reduce disease severity.Outbreaks of 1997 avian influenza H5N1 and 2009 pandemic (p) H1N1 in humans have provided an opportunity to gain insight into cross-reactive immunity. The US military periodically collects and stores serum samples from service members linked to medical records.1 We measured cross-reactive antibodies in stored serum to avian influenza H5N1 and 2009 pH1N1 from US military personnel and identified factors associated with presence of neutralizing antibodies.Two hundred archived serum samples were obtained from the US Department of Defense Serum Repository. They were representative of a wide cross-section of active military personnel at the times of collection, whereas specific geographic information was not available on the individual selected; the cohort represents the general US military population, which is deployed throughout the United States and globally. Fifty samples each were selected from four birth cohorts: (1) < 1949, (2) 1960–1965, (3) 1966–1971, and (4) 1972–1977. Within each cohort, 25 samples were collected in the year 2000 (before the introduction of intranasal live attenuated influenza vaccine [LAIV]), and 25 samples were collected in 2008 (where 51% of donors had received LAIV). It has been suggested that LAIV elicits cross-reactive immunity.2,3 The samples were all collected before the outbreak of 2009 pH1N1, and there have not been any reported outbreaks of H5N1 in US military personnel.Assays used to measure antibodies included a hemagglutination inhibition (HI) assay and a neuraminidase inhibition (NI) assay.4 Viral neutralization by antibodies against H5N1 and 2009 pH1N1 was assessed by influenza (H5) pseudotyped lentiviral particle-based (H5pp)5 and microneutralization assays, respectively. Electronic medical and vaccination records from the Defense Medical Surveillance System (DMSS), which captured records before the serum sample date, were linked to samples and compared with the in vitro results.1The odds ratios (ORs) and 95% confidence intervals (95% CIs) of univariate and multivariate binary logistic regression analyses were used to determine the association between donor characteristics and positive antibody responses. A multiple logistic regression model was constructed, and it included independent variables with a P value of < 0.05 in univariate logistic regression. A P value of < 0.05 was considered to indicate statistical significance. SPSS 12.0 for Windows (SPSS Inc., Chicago, IL) was used to perform all statistical analysis.Cross-reactivity is summarized in 5 and 22.5% for the NI assay. H5pp and NI antibody titers to H5N1 were evenly distributed among birth cohorts and did not differ substantially based on history of vaccination or prior respiratory infections. Of those individuals with neutralizing antibodies to H5N1 (N = 28), 32.1% also had neutralizing antibodies to pH1N1, whereas 19.3% of those individuals with any H5N1-specific antibody response also had neutralizing antibodies to pH1N1 (
Characteristics (n)H5N12009 pH1N1§
HI assay* % positive (GM titer)H5pp % positive (GM titer)NI assay % positive (GM titer)HI assay % positive (GM titer)Neutralization % positive (GM titer)NI assay % positive (GM titer)
Total
 2000.5 (5.1)14.0 (21.4)22.5 (121.6)5.5 (7.1)16.5 (20.4)9.0 (92.8)
Birth cohort
 1936–1949 (50)2.0 (5.3)18.0 (22.0)24.0 (126.0)6.0 (7.3)16.0 (19.5)12.0 (97.6)
 1960–1965 (50)0.0 (5.0)16.0 (20.3)26.0 (129.6)6.0 (7.7)30.0 (27.5)6.0 (90.3)
 1966–1971 (50)0.0 (5.0)12.0 (23.3)20.0 (117.9)10.0 (8.0)16.0 (23.6)10.0 (92.2)
 1972–1977 (50)0.0 (5.3)10.0 (20.0)20.0 (113.7)0.0 (5.7)4.0 (13.6)8.0 (91.5)
Serum collection year
 Y2000 (100)0.0 (5.1)15.0 (21.7)21.0 (120.3)7.0 (7.3)16.0 (20.6)11.0 (94.5)
 Y2008 (100)1.0 (5.2)13.0 (21.1)24.0 (123.0)4.0 (7.0)17.0 (20.1)7.0 (91.2)
Sex
 Female (32)3.1 (5.7)21.9 (26.3)12.5 (102.4)3.1 (6.9)12.5 (19.2)6.3 (96.7)
 Male (168)0.0 (5.0)12.5 (20.5)24.4 (125.7)6.0 (7.2)17.3 (20.6)9.5 (92.1)
Any cross-reactive antibody to
 H5N1 (57)8.8 (8.9)19.3 (25.2)22.8 (119.9)
 pH1N1 (45)2.2 (5.3)28.9 (31.2)37.8 (165.2)
Neutralizing antibodies to
 H5N1 H5pp (28)10.7 (9.5)32.1 (33.6)25.0 (116.9)
 2009 pH1N1 neutralization (33)3.0 (5.4)27.3 (28.9)30.3 (140.3)
Lifetime seasonal vaccinations
 No record (66)0.0 (5.1)10.6 (20.2)27.7 (128.1)7.6 (7.4)15.2 (20.6)12.1 (96.5)
 1–5 vaccinations (88)1.1 (5.2)15.9 (21.5)17.0 (109.2)5.7 (7.1)17.0 (20.5)6.8 (89.1)
  > 5 vaccinations (46)0.0 (5.1)15.2 (22.2)32.6 (138.8)2.2 (6.8)17.4 (19.7)8.7 (95.0)
Time since last vaccine
 No record (66)0.0 (5.1)10.6 (20.2)22.7 (128.1)7.6 (7.4)15.2 (20.6)12.1 (96.5)
  ≤ 1 year (96)0.0 (5.1)15.6 (21.5)24.0 (120.7)4.2 (7.1)19.8 (21.0)8.3 (91.2)
 > 1 year (38)2.6 (5.3)15.8 (22.4)18.4 (113.4)5.2 (6.8)10.5 (18.3)5.3 (90.6)
Vaccination history lifetime (at least one dose)
 No record of vaccination (66)0.0 (5.1)10.6 (20.2)22.7 (128.1)7.6 (7.4)15.2 (20.6)12.1 (96.5)
 Inactivated whole virus (71)0.0 (5.0)14.1 (20.4)22.5 (115.7)2.8 (6.4)15.5 (19.6)5.6 (87.1)
 Split type (102)1.0 (5.0)15.7 (20.4)21.6 (115.7)4.9 (6.4)19.6 (19.6)6.9 (87.1)
 Influenza vaccine not otherwise specified (16)0.0 (5.2)12.5 (27.9)37.5 (166.4)0.0 (6.2)6.3 (16.1)12.5 (102.3)
 Live attenuated intranasal (50)0.0 (5.1)10.0 (18.8)20.0 (112.2)4.0 (7.0)18.0 (20.3)4.0 (85.2)
History of respiratory illness
 No record of illness (119)0.0 (5.0)10.1 (18.5)18.5 (112.6)4.2 (7.0)15.1 (20.5)8.4 (90.7)
 Influenza-like illness (4)0.0 (5.0)25.0 (20.7)0.0 (80.0)0.0 (8.4)25.0 (28.3)25.0 (100.2)
 Upper respiratory infection (65)1.5 (5.4)23.1 (29.3)27.7 (135.0)7.7 (7.3)18.5 (20.7)9.2 (93.1)
 Lower respiratory infection (37)2.7 (5.6)18.9 (30.2)35.1 (157.6)8.1 (8.1)21.6 (22.4)13.5 (108.4)
 Respiratory illness past year (28)0 (5.1)25.0 (25.1)32.1 (154.9)7.1 (8.0)28.6 (24.4)3.6 (86.3)
Open in a separate windowTiters with a value of zero (below the detection limit) were assigned a value of five for calculation of geometric means (GMs).*H5N1, A/Vietnam/1203/2004; positive titer ≥ 40.H5 hemagglutinin (A/Cambodia/408008/05) pseudotyped lentiviral particle; positive titer ≥ 160.Reassortant H1N1 (HA, PB1, PB2, PA, NP, and M from H1N1 [A/PR/8/34]; N1 from H5N1 [A/Vietnam/DT-036/2005]); positive titer ≥ 160.§2009 H1N1, A/California/04/2009; same positive titer cutoffs as for H5N1.As with H5N1, samples with positive HI titers were low for 2009 pH1N1 at 5.5%, whereas neutralizing antibody titers were higher, with 16.5% positive in the microneutralization assay but only 9% positive in the NI assay. Positive neutralization titers were less evenly distributed among birth cohorts, with only 4% positive in the 1972–1977 birth cohort, whereas 30% were positive in the 1960–1965 cohort. Like H5N1, positive antibody titers to 2009 pH1N1 did not differ substantially based on history of vaccination or prior respiratory infections. Of those individuals with neutralizing antibodies to pH1N1 (N = 33), 27.3% also had neutralizing antibodies to H5N1, whereas 28.9% of those individuals with any pH1N1-specific antibody response also had neutralizing antibodies to H5N1.Univariate associations between the prevalence of cross-reactive antibodies to H5N1 and 2009 pH1N1 and independent variables, including year of birth, serum collection year, sex, and seasonal influenza vaccination history, are shown in Characteristic (n)2009 pH1N1H5N1PrevalenceOR (95% CI)Adjusted OR (95% CI)PrevalenceOR (95% CI)Positive neutralizing antibody33 (16.5%)28 (14.0%)Serum collection year 2000 (100)16 (16.0%)ReferenceReference15 (15.0%)Reference 2008 (100)17 (17.0%)1.1 (0.5–2.3)0.7 (0.3–1.8)13 (13.0%)0.9 (0.4–1.9)Birth cohort 1936–1949 (50)8 (16.0%)4.6 (0.9–22.7)5.3 (1.0–27.0)9 (18.0%)2.0 (0.6–6.4) 1960–1965 (50)15 (30.0%)10.3 (2.2–47.9)11.0 (2.3–52.9)8 (16.0%)1.7 (0.5–5.7) 1966–1971 (50)8 (16.0%)4.6 (0.9–22.7)5.1 (1.0–26.2)6 (12.0%)1.2 (0.4–4.3) 1972–1977 (50)2 (4.0%)ReferenceReference5 (10.0%)ReferenceSex Female (32)4 (12.5%)Reference7 (21.9%)Reference Male (168)29 (17.3%)1.5 (0.5–4.5)21 (12.5%)0.5 (0.2–1.3)Positive neutralizing antibody titers H5pp (57)11 (19.3%)1.3 (0.6–2.9) pH1N1 (45)13 (28.9%)3.8 (1.6–8.7)Vaccination record Number of seasonal influenza vaccinations  No record (66)10 (15.2%)Reference7 (10.6%)Reference  1–5 vaccinations (88)15 (17.0%)1.2 (0.5–2.8)14 (15.9%)1.6 (0.6–4.2)  > 5 vaccinations (46)8 (17.4%)1.2 (0.4–3.3)7 (15.2%)1.5 (0.5–4.7) Time since last vaccination  No record (66)10 (15.2%)Reference7 (10.61%)Reference   ≤ 1 year (96)19 (19.8%)1.4 (0.6–3.2)15 (15.6%)1.6 (0.6–4.1)  > 1 year (33)4 (10.5%)0.7 (0.2–2.3)6 (15.8%)1.6 (0.5–5.1) Number of inactivated whole virus vaccinations  No record (129)22 (17.1%)ReferenceReference18 (14.0%)Reference  1–5 vaccinations (53)4 (7.5%)0.4 (0.1–1.2)0.4 (0.1–1.4)7 (13.2%)0.9 (0.4–2.4)  > 5 vaccinations (18)7 (38.9%)3.1 (1.1–8.9)4.4 (1.3–15.6)3 (16.7%)1.2 (0.3–4.7) Time since last inactivated whole virus vaccination  No record (129)22 (17.1%)Reference18 (14.0%)Reference   ≤ 1 year (19)4 (21.1%)1.3 (0.4–4.3)3 (15.8%)1.2 (0.3–4.4)  > 1 year (52)7 (13.5%)0.8 (0.3–1.9)7 (13.5%)1.0 (0.4–2.5) Number of split type vaccinations  No record (98)13 (13.3%)Reference12 (12.2%)Reference  1–5 vaccinations (94)19 (20.2%)1.7 (0.8–3.6)14 (14.9%)1.3 (0.6–2.9)  > 5 vaccinations (8)1 (12.5%)0.9 (0.1–8.2)2 (25.0%)2.4 (0.4–13.2) Time since last split type vaccination  No record (98)13 (13.3%)Reference12 (12.2%)Reference   ≤ 1 year (44)10 (22.7%)1.9 (0.8–4.8)10 (22.7%)2.1 (0.8–5.3)  > 1 year (58)10 (17.2%)1.4 (0.6–3.3)6 (10.3%)0.8 (0.3–2.3) Number of intranasal LAIV vaccinations  No record (150)24 (16.0%)Reference23 (15.3%)Reference  1–5 vaccinations (50)9 (18.0%)1.2 (0.5–2.7)5 (10%)0.6 (0.2–1.7) Time since last intranasal LAIV vaccination  No record (150)24 (16.0%)Reference23 (15.3%)Reference   ≤ 1 year (34)7 (20.6%)1.4 (0.5–3.5)3 (8.8%)0.5 (0.2–1.9)  > 1 year (16)2 (12.5%)0.8 (0.2–3.5)2 (12.5%)0.8 (0.2–3.7)Open in a separate windowTo the best of our knowledge, the present study is the first report of cross-reactive antibodies to both H5N1 and 2009 pH1N1 in a US military population. Cross-reactive antibodies to both influenza viruses were common in this population. Most serum samples (86%) positive in the H5N1 neutralization assay had no detectable HI activity (titer ≥ 10), whereas 94% of samples that neutralized 2009 pH1N1 also had detectable HI activity (titer ≥ 10; data not shown). In addition, cross-reactive antibodies to avian influenza H5N1 were not necessarily accompanied by cross-reactive antibodies to 2009 pH1N1. Taken together, these findings suggest that the observed cross-reactive neutralization against the two influenza viruses was caused by different antibodies in serum samples.This report is also the first report to associate history of receiving more than five doses of inactivated whole influenza virus vaccine with neutralizing antibodies against 2009 pH1N1. This finding suggests a protective advantage of repeated vaccination with seasonal whole virus vaccine, generating cross-reactive antibodies against previously unencountered strains. It has been suggested that the high immunogenicity of the inactivated whole virus vaccine is partly caused by the adjuvant effect of the viral RNA presented, stimulating innate immunity through the Toll-like receptor (TLR) 7-dependent pathway.6 We hypothesize that the combined effect of adjuvant activity and the heterogenous mix of flu strains that an individual would be exposed to over the course of multiple seasonal vaccinations may enhance the breadth of antibody response and promote the generation of cross-reactive antibodies.A retrospective case-control study conducted in US military personnel after the outbreak of 2009 pH1N1 showed that both 2008–2009 seasonal influenza vaccine and history of seasonal vaccine in the prior 4 years afforded some protection against pH1N1. Vaccine effectiveness (VE) was high in persons ≥ 40 (55%) or < 25 (50%) years of age but very low in persons 25–39 years of age (< 10%).7 These findings correlate with the high levels of cross-reactive 2009 pH1N1 antibodies reported here, with 30% in the 1960–1965 cohort (age range = 35–48) but only 4% in the 1972–1977 cohort (age range = 23–36). Our findings are similar to the results found recently in an elderly population in the United States.8 The exception is in those individuals born before 1950, in whom antibody responses were much higher in this cohort. Both our study and the US study differ from two recent seroprevalence studies in Singapore and China, where cross-reactive antibodies were rare in various age groups.9,10 High seasonal influenza vaccination rates in US military personnel found here and prior studies11 may explain the differences observed in these populations, although results from small retrospective seroprevalence studies should be interpreted cautiously. Possible alternative explanations include differences in laboratory assay methods, natural influenza exposure in the sampled populations, and/or use of convenience sampling methods.Studies in humans suggest that the antibody to influenza neuraminidase is associated with resistance to influenza.12 A recent serological study in a small number of human serum samples showed that 24% had cross-reactive antibodies to avian N1,13 similar to our findings (22.5%). In addition, we observed that 9% of serum samples had cross-reactive antibodies to pH1N1.Like pH1N1, persons < 40 years old seem to be most affected by H5N1 infection, with infection rarer in older individuals.14 However, we did not find a difference in cross-reactive antibody prevalence to either neuraminidase or neutralizing antibodies (H5pp) with year of birth or other immunologic markers of exposure, including vaccination history or prior respiratory illness.A possible limitation of our study is that the DMSS may not have captured all relevant medical encounter and/or vaccination data, particularly for encounters that were not entered into the system electronically or coded accurately. Data in the DMSS are provider-dependent, and the DMSS captures data from various historical time periods, dating back to 1980 for immunization data, 1985 for Department of Defense Serum Repository specimens, 1990 for demographic data, and only 1996 for outpatient data. Interpretation of data presented on history of respiratory illness, which is entirely dependent on voluntary provider reporting and International Classification of Diseases (ICD-9) coding, is particularly limited by lack of virologic confirmation.Cross-reactive immunity to pathogenic influenza strains was found in a subset of US military service members, and it may serve to prevent or reduce the severity of influenza. A better understanding of the mechanisms underlying the development of cross-reactive antibodies will aid in the development of more effective preventive and therapeutic measures.  相似文献   
2.
Cross-reactive Antibodies against Avian Influenza Virus A (H5N1)     
Sathit Pichyangkul  Anan Jongkaewwattana  Arunee Thitithanyanont  Peeraya Ekchariyawat  Suwimon Wiboon-ut  Amporn Limsalakpetch  Kosol Yongvanitchit  Utaiwan Kum-Arb  Rangsini Mahanonda  Pongsak Utaisincharoen  Stitaya Sirisinha  Carl J. Mason    Mark M. Fukuda 《Emerging infectious diseases》2009,15(9):1537-1539
  相似文献   
3.
Randomized double-blind, placebo-controlled trial of oral atenolol in patients with unexplained syncope and positive upright tilt table test results     
Nithi Mahanonda MD  FRACP  Kiertijai Bhuripanyo MD  Charuwan Kangkagate MS  Kanchana Wansanit Nursing  Bang-on Kulchot BA  Koonlawee Nademanee MD  Suphachai Chaithiraphan MD 《American heart journal》1995,130(6):1250-1253
The objective of this investigation was the assessment of the response rate of oral atenolol in patients with vasovagal syncope after 1 month of treatment. We randomized into two groups all patients referred to our unit who had had at least one episode of syncope or two episodes of presyncope 1 month before presentation and had a positive isuprel Tilt Table Test (TTT). Group 1 (Gr 1) received oral atenolol, and group 2 (Gr 2) received placebo medication. After a 1-month period patients were reassessed for degree of their symptoms and underwent repeated TTT. Forty-two patients were enrolled in the study. Gr 1 and Gr 2 were comparable in age (38 ± 13 years vs 43 ± 14 years, p = 0.216 and sex (male/female = 6:15 vs 10:11, p = 0.204). The severity of attack was similar in both groups. Eight patients in Gr 1 and six patients in Gr 2 had mitral valve prolapse (p = 0.5). No significant differences were seen in systolic blood pressure (122 ± 17 vs 117 ± 16 mm Hg, p = 0.334), diastolic blood pressure (70 ± 11 vs 72 ± 11 mm Hg, p = 0.677), and heart rate (79 ± 12 vs 79 ± 13, p = 0.98) between the two groups. The response rates (negative TTT) after 1 month of treatment were 62% versus 5% (p = 0.0004) in the atenolol and control group, respectively. Moreover, patients who received atenolol reported feeling better compared with those who received placebo (71% vs 29%, p = 0.02). In conclusion, atenolol significantly improved symptoms of patients with vasovagal syncope. Patients who received atenolol were more likely to have negative isuprel TTT.  相似文献   
4.
The effects of Porphyromonas gingivalis LPS and Actinobacillus actinomycetemcomitans LPS on human dendritic cells in vitro, and in a mouse model in vivo     
Mahanonda R  Pothiraksanon P  Sa-Ard-Iam N  Yamazaki K  Schifferle RE  Hirunpetcharat C  Yongvanichit K  Pichyangkul S 《Asian Pacific journal of allergy and immunology / launched by the Allergy and Immunology Society of Thailand》2006,24(4):223-228
Interaction between different bacterial plaque pathogens and dendritic cells may induce different types of T helper (Th) cell response, which is critical in the pathogenesis of periodontitis. In this study we investigated the effects of lipopolysaccharide (LPS) from Porphyromonas gingivalis and Actinobacillus actinomycetemcomitans on human monocyte-derived dendritic cells (Mo-DCs) with respect to co-stimulatory molecule expression, cytokine production and Th cell differentiation. Unlike Escherichia coli and A. actinomycetemcomitans LPS, P. gingivalis LPS induced only low levels of CD40, CD80, HLA-DR and CD83 expression on Mo-DCs. LPS from both bacteria induced considerably lower TNF-alpha and IL-10 than did E. coli LPS. LPS from all three bacteria induced only negligible IL-12 production. In a human mixed-leukocyte reaction, and in an ovalbumin-specific T cell response assay in mice, both types of LPS suppressed IFN-gamma production. In conclusion, stimulation by P. gingivalis LPS and A. actinomycetemcomitans LPS appears to bias Mo-DCs towards Th2 production.  相似文献   
5.
LPS-stimulated human gingival fibroblasts inhibit the differentiation of monocytes into osteoclasts through the production of osteoprotegerin   总被引:8,自引:0,他引:8  
Nagasawa T  Kobayashi H  Kiji M  Aramaki M  Mahanonda R  Kojima T  Murakami Y  Saito M  Morotome Y  Ishikawa I 《Clinical and experimental immunology》2002,130(2):338-344
Periodontitis is an inflammatory bone disease caused by Gram-negative anaerobic bacteria, but the precise mechanism of bone destruction remains unknown. Activated T lymphocytes secrete receptor activator of NF-kappaB ligand (RANKL) and support the differentiation of monocytes into mature osteoclasts. The purpose of this study was to examine the expression of RANKL and its inhibitor, osteoprotegerin (OPG), in inflamed gingival tissue and to clarify the role of human gingival fibroblasts (HGFs) in osteoclastogenesis regulated by RANKL. HGFs and gingival mononuclear cells (GMCs) were obtained from chronic periodontitis patients during routine periodontal surgery. Expression of OPG and RANKL mRNA in gingival tissue and HGFs was examined with RT-PCR. OPG production was measured using ELISA. Expression of RANKL, CD4, CD8 and CD69 on GMCs was determined by flow-cytometry using RANK-Fc fusion protein and the respective monoclonal antibodies. Osteoclastogenesis by RANKL was assayed by counting the number of tartarate-resistant acid phosphatase (TRAP)-positive cells after culturing human peripheral blood monocytes with recombinant human RANKL and macrophage-colony stimulating factor (M-CSF) for 10 days. OPG and RANKL mRNA were expressed in 80% (16/20) and 25% (5/20) of periodontitis lesions, respectively. OPG, but not RANKL, mRNA was expressed within HGFs. OPG mRNA expression and production by HGFs was augmented by LPS stimulation. All GMC samples expressed CD69, and two of five GMC samples expressed RANKL. The culture supernatant of LPS-stimulated gingival fibroblasts significantly reduced the number of TRAP positive cells generated by culturing monocytes with RANKL and M-CSF. The present study suggests that LPS-stimulated HGFs inhibit monocyte differentiation into osteoclasts through the production of OPG.  相似文献   
6.
Limit dilution analysis of peripheral blood T lymphocytes specific to periodontopathic bacteria.   总被引:1,自引:1,他引:1       下载免费PDF全文
R Mahanonda  G J Seymour  L W Powell  M F Good    J W Halliday 《Clinical and experimental immunology》1989,75(2):245-251
A characteristic of active cytomegalovirus (CMV) infection is its suppressive effect on in vitro assays of immune function. The expression of CD11b by the Cd4+ and Cd8+ lymphocytes allows the identification of subsets with distinct regulatory functions of pokeweed mitogen (PWM) induced B cell differentiation. In order to relate that result with our previous observation that CMV carriers have significantly increased numbers of CD4+, HNK1+ and CD8+, HNK1+ lymphocytes in their peripheral blood compared with non-carriers, we performed a three-colour flow cytometric analysis of the co-expression of Cd11b and HNK1 by CD4+ and CD8+ lymphocytes obtained from 27 CMV carriers and 42 non-carriers. The differences between CMV carriers and non-carriers were significant for the CD4+, HNK1+ lymphocytes (median [5th and 95th percentiles], 59 [18 and 123 versus 24/7 and 73 per mm3, respectively; P less than 0.001) and CD8+, HNK1+ lymphocytes (59 [18 259] versus 52 [23 and 139] per mm3; P less than 0.001), but not for the CD4+, CD11b+ lymphocytes (59 [18 and 135] versus 52 [17 and 104] per mm3) and the CD8+, CD11b+ lymphocytes (85 [34 and 293] versus 82 [21 and 248] per mm3). The CD4+, HNK1+ and CD8+, HNK1+ lymphocytes that were increased in CMV carriers compared with non-carriers included mostly CD11b-, but also CD11b+ lymphocytes. After sorting CD4+ and CD8+ lymphocytes for four CMV carriers into HNK1+ and HNK1- fractions, we analyzed their regulatory functions on PWM-driven B cell Helper function to PWM-driven B cell differentiation was exclusively associated with the CD4+, HNK1- lymphocytes; the CD4+, HNK1+ generally did not show helper or suppressor activity in this assay. Both CD8+, HNK1+ and CD8+, HNK1- lymphocytes showed suppressor activity. Thus, the NHK1 marker does not constitute a phenotypical correlate for suppressor cells of PWM-driven B-cell differentiation.  相似文献   
7.
Upregulation of co-stimulatory molecule expression and dendritic cell marker (CD83) on B cells in periodontal disease     
Mahanonda R  Sa-Ard-Iam N  Yongvanitchit K  Wisetchang M  Ishikawa I  Nagasawa T  Walsh DS  Pichyangkul S 《Journal of periodontal research》2002,37(3):177-183
T cells and their cytokines are well known for their important role in the pathogenesis of periodontitis. To date, the role of antigen presenting cells (APCs), which are known to be critical in the regulation of T cell response, has been poorly investigated in periodontitis. In this study, we analyzed the expression of co-stimulatory molecules (CD80 and CD86) and CD83, which is a marker of mature dendritic cells, on gingival cells that were isolated from severe periodontitis tissues, with the use of flow cytometry. Significant upregulation of CD86 and CD83 expression was detected in periodontitis lesions, and most of this occurred on B cells. In vitro peripheral blood mononuclear cell cultures showed that stimulation with different periodontopathic bacteria, that included Porphyromonas gingivalis, Actinobacillus actinomycetemcomitans, Prevotella intermedia, and Actinomyces viscosus, upregulated both CD86 and CD83 expression on B cells. Therefore, the presence of plaque bacteria may be responsible for the enhanced expression seen in vivo on gingival B cells. APC function by bacterial-activated B cells was further investigated using allogeneic mixed leukocyte reactions. After 24 h culture with either A. actinomycetemcomitans or P. gingivalis, these activated B cells performed as potent APCs in mixed leukocyte reactions, and they stimulated T cells to produce high levels of gamma interferon and minimal interleukin-5. In conclusion, periodontopathic bacterial-induced B cell activation with upregulation of CD86 and CD83 may be associated with enhanced APC function. The results of this study suggest, therefore, that infiltrated gingival B cells have a possible role as APCs in the regulation and maintenance of local T cell response in periodontitis.  相似文献   
8.
Individual diversities in interferon gamma production by human peripheral blood mononuclear cells stimulated with periodontopathic bacteria     
Kobayashi H  Nagasawa T  Aramaki M  Mahanonda R  Ishikawa I 《Journal of periodontal research》2000,35(6):319-328
Polarization of type 1 (Th1) or type 2 (Th2) immune responses determines the prognosis of many infectious diseases. Interferon gamma (IFN-gamma) and IL-4 are key cytokines for the development of type 1 and type 2 immune responses, respectively. The aim of this study was to examine individual diversities in the polarization of type 1 and type 2 responses against periodontopathic bacteria. Peripheral blood mononuclear cells (PBMCs) from adult periodontitis (AP) patients and healthy (H) subjects were stimulated with Porphyromonas gingivalis, Actinobacillus actinomycetemcomitans and Bacteroides forsythus with or without polymyxin-B, CTLA-4 Ig and anti-IL-12 antibody. IFN-gamma, IL-4 and IL-12 in the culture supernatant were measured. IFN-gamma and IL-4 producing cells were also examined using a multiparameter flow cytometric assay. Bone resorption rate in AP patients was calculated using Schei's method, and the probing pocket depth was also measured. PBMCs from AP patients and H subjects produced IFN-gamma and IL-12, whereas the production of IL-4 was rarely observed. Among the bacteria tested, A. actinomycetemcomitans was the most potent inducer of IFN-gamma and IL-12, and the reaction was inhibited by polymyxin-B. IFN-gamma was found to be produced by T cells in the PBMCs, and the production was significantly reduced by CTLA-4 Ig and anti-IL-12 neutralizing antibody. The amount of IFN-gamma produced by the PBMCs of AP patients and H subjects varied among individuals, and was significantly correlated with the amount of IL-12 produced in a particular individual. The production of IFN-gamma was not related with periodontal condition which was evaluated using bone resorption and pocket depth. These results suggest that polarization of type 1 response against periodontopathic bacteria is dependent on the production of IL-12 by monocytes, and that IL-12 stimulates IFN-gamma production. However, individual diversities of IFN-gamma production might not be directly related to the severity of periodontitis.  相似文献   
9.
MxA expression induced by α-defensin in healthy human periodontal tissue     
Mahanonda R  Sa-Ard-Iam N  Rerkyen P  Thitithanyanont A  Subbalekha K  Pichyangkul S 《European journal of immunology》2012,42(4):946-956
Although periodontal tissue is continually challenged by microbial plaque, it is generally maintained in a healthy state. To understand the basis for this, we investigated innate antiviral immunity in human periodontal tissue. The expression of mRNA encoding different antiviral proteins, myxovirus resistance A (MxA), protein kinase R (PKR), oligoadenylate synthetase (OAS), and secretory leukocyte protease inhibitor (SLPI) were detected in both healthy tissue and that with periodontitis. Immunostaining data consistently showed higher MxA protein expression in the epithelial layer of healthy gingiva as compared with tissue with periodontitis. Human MxA is thought to be induced by type I and III interferons (IFNs) but neither cytokine type was detected in healthy periodontal tissues. Treatment in vitro of primary human gingival epithelial cells (HGECs) with α-defensins, but not with the antimicrobial peptides β-defensins or LL-37, led to MxA protein expression. α-defensin was also detected in healthy periodontal tissue. In addition, MxA in α-defensin-treated HGECs was associated with protection against avian influenza H5N1 infection and silencing of the MxA gene using MxA-targeted-siRNA abolished this antiviral activity. To our knowledge, this is the first study to uncover a novel pathway of human MxA induction, which is initiated by an endogenous antimicrobial peptide, namely α-defensin. This pathway may play an important role in the first line of antiviral defense in periodontal tissue.  相似文献   
10.
Infection of human gingival fibroblasts with Aggregatibacter actinomycetemcomitans: An in vitro study     
Arirachakaran P  Apinhasmit W  Paungmalit P  Jeramethakul P  Rerkyen P  Mahanonda R 《Archives of oral biology》2012,57(7):964-972
ObjectiveAggregatibacter actinomycetemcomitans is known to be a major cause of localized aggressive periodontitis. Previous research has suggested that A. actinomycetemcomitans can damage many types of host cells. There is evidence for the ability of this organism to invade endothelial and epithelial cells, but information pertaining to its potential for invading gingival fibroblasts is very limited. Internalization of bacteria is not only responsible for damaging host tissue but also a means to evade the host immune response. It was hypothesized that A. actinomycetemcomitans can invade and reside in human gingival fibroblasts (HGF).MethodsPrimary cultures of HGF were infected with A. actinomycetemcomitans at a ratio of 1:100. Bacterial internalization was determined by an antibiotic protection assay. Bacterial-fibroblast interaction was examined using phase-contrast, scanning and transmission electron microscopy.ResultsIt was demonstrated that A. actinomycetemcomitans was internalized into HGF at an efficiency of 0.084%. Transmission electron microscopic study showed the presence of A. actinomycetemcomitans in the cytoplasm of HGF without the surrounding membrane. Scanning electron micrographs revealed the sloughing of HGF surfaces on which A. actinomycetemcomitans adhered. Rounded cells, attachment loss and damaged cells were also observed.ConclusionsIt is concluded that the attachment and invasion of A. actinomycetemcomitans into human gingival fibroblasts play a role in periodontal tissue damage and may also be a means of immune evasion.  相似文献   
1 [2] [3] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号