首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   523篇
  免费   35篇
  国内免费   5篇
耳鼻咽喉   4篇
儿科学   8篇
妇产科学   18篇
基础医学   82篇
口腔科学   27篇
临床医学   48篇
内科学   68篇
皮肤病学   21篇
神经病学   55篇
特种医学   13篇
外科学   97篇
综合类   3篇
预防医学   35篇
眼科学   18篇
药学   26篇
中国医学   3篇
肿瘤学   37篇
  2023年   6篇
  2022年   17篇
  2021年   41篇
  2020年   28篇
  2019年   30篇
  2018年   29篇
  2017年   23篇
  2016年   26篇
  2015年   24篇
  2014年   22篇
  2013年   28篇
  2012年   43篇
  2011年   50篇
  2010年   22篇
  2009年   16篇
  2008年   25篇
  2007年   31篇
  2006年   18篇
  2005年   23篇
  2004年   12篇
  2003年   10篇
  2002年   7篇
  2001年   2篇
  2000年   5篇
  1999年   5篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1991年   1篇
  1989年   1篇
  1988年   2篇
  1985年   2篇
  1983年   1篇
  1982年   2篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1971年   2篇
  1908年   1篇
排序方式: 共有563条查询结果,搜索用时 15 毫秒
1.
Autosomal dominant cerebellar ataxia with retinal degeneration (ADCAII) was previously mapped by linkage analysis studies to chromosome 3p12- p21.1 (SCA7). Positional cloning efforts have recently identified a novel gene, SCA7 , containing a translated CAG repeat, expanded in SCA7 patients. We cloned the SCA7 gene from a yeast artificial chromosome (YAC) clone contig spanning the SCA7 candidate region. Using a combination of genomic sequencing and cosmid-based exon trapping, two expressed sequence tags were identified. Sequencing of the corresponding cDNA clones and RT-PCR analysis identified the full- length SCA7 cDNA. Together, our sequence data defined the intron/exon boundaries of the first two coding exons of the SCA7 gene, with the first exon containing the expanded CAG repeat. Further, sequence comparison with the published SCA7 cDNA identified one additional putative exon in the 5'-UTR region of the SCA7 gene. The SCA7 gene was mapped on the YAC contig in the 2.5 cM interval between D3S1600 and D3S1287. In one extended Belgian SCA7 pedigree the expanded alleles ranged from 38 to at least 55 repeats with allele lengths being inversely correlated with onset age of ADCAII symptoms. The SCA7 repeats increased in length in successive generations. Normal alleles had from four to 18 repeats, with 10 repeats being the most common allele.   相似文献   
2.
Collapsing glomerulopathy (CG), an aggressive variant of focal segmental glomerular sclerosis, is a renal disease with severe proteinuria and rapidly progressive renal failure. The pathogenesis of CG is unknown. It strongly resembles human immunodeficiency virus (HIV)-associated nephropathy, but the patients are HIV negative. The characteristic glomerular lesion is capillary loop collapse with prominent podocytes filling Bowman's space. Interestingly, these glomerular changes are usually associated with severe tubulointerstitial injury, including tubular epithelial degenerative changes, microcystic dilation of several tubules, and interstitial inflammatory cell infiltrate. Recently, it became evident that the morphologic pattern of CG may appear not only in native kidneys, but also de novo in renal allografts, and that the pattern of CG in renal transplants is not always associated with severe proteinuria. Studies describing CG in renal allografts are all based on biopsies. We report 3 allograft nephrectomy specimens that showed a zonal distribution of the characteristic collapsing glomerular changes with associated tubulointerstitial injury. All 3 kidneys had obliterative vascular changes. One nephrectomy specimen had chronic obliterative transplant arteriopathy, 1 had acute vascular rejection, and 1 had thrombotic microangiopathy. None of the patients had severe proteinuria. Our cases suggest that the morphologic pattern of CG in renal allografts may not represent the same disease process as CG in native kidneys and provide further evidence that collapsing glomerular changes do not define the disease entity of CG, but rather represent a pattern of renal injury. Among other factors, hemodynamic disturbance may play a role in the development of the pattern of CG in renal allografts.  相似文献   
3.
RASopathies caused by germline pathogenic variants in genes that encode RAS pathway proteins. These disorders include neurofibromatosis type 1 (NF1), Noonan syndrome (NS), cardiofaciocutaneous syndrome (CFC), and Costello syndrome (CS), and others. RASopathies are characterized by heterogenous manifestations, including congenital heart disease, failure to thrive, and increased risk of cancers. Previous work led by the NCI Pediatric Oncology Branch has altered the natural course of one of the key manifestations of the RASopathy NF1. Through the conduct of a longitudinal cohort study and early phase clinical trials, the MEK inhibitor selumetinib was identified as the first active therapy for the NF1‐related peripheral nerve sheath tumors called plexiform neurofibromas (PNs). As a result, selumetinib was granted breakthrough therapy designation by the FDA for the treatment of PN. Other RASopathy manifestations may also benefit from RAS targeted therapies. The overall goal of Advancing RAS/RASopathy Therapies (ART), a new NCI initiative, is to develop effective therapies and prevention strategies for the clinical manifestations of the non‐NF1 RASopathies and for tumors characterized by somatic RAS mutations. This report reflects discussions from a February 2019 initiation meeting for this project, which had broad international collaboration from basic and clinical researchers and patient advocates.  相似文献   
4.
We aimed to determine whether three-dimensional (3D) cartilage could be engineered from umbilical cord blood (CB) cells and compare it with both engineered fetal cartilage and native tissue. Ovine mesenchymal progenitor cells were isolated from CB samples (n=4) harvested at 80-120 days of gestation by low-density fractionation, expanded, and seeded onto polyglycolic acid scaffolds. Constructs (n=28) were maintained in a rotating bioreactor with serum-free medium supplemented with transforming growth factor-beta1 for 4-12 weeks. Similar constructs seeded with fetal chondrocytes (n=13) were cultured in parallel for 8 weeks. All specimens were analyzed and compared with native fetal cartilage samples (n=10). Statistical analysis was by analysis of variance and Student's t-test (p<.01). At 12 weeks, CB constructs exhibited chondrogenic differentiation by both standard and matrix-specific staining. In the CB constructs, there was a significant time-dependent increase in extracellular matrix levels of glycosaminoglycans (GAGs) and type-II collagen (C-II) but not of elastin (EL). Fetal chondrocyte and CB constructs had similar GAG and C-II contents, but CB constructs had less EL. Compared with both hyaline and elastic native fetal cartilage, C-II and EL levels were, respectively, similar and lower in the CB constructs, which had correspondingly lower and similar GAG levels than native hyaline and elastic fetal cartilage. We conclude that CB mesenchymal progenitor cells can be successfully used for the engineering of 3D cartilaginous tissue in vitro, displaying select histological and functional properties of both native and engineered fetal cartilage. Cartilage engineered from CB may prove useful for the treatment of select congenital anomalies.  相似文献   
5.
PURPOSE: Overexpression of eIF4E in surgical margins of head and neck cancer patients is an independent risk factor for recurrence. We hypothesize that overexpressed eIF4E is functionally active in tumor margins through activation of the Akt/mammalian target of rapamycin (mTOR) pathway EXPERIMENTAL DESIGN: Western blots and/or immunohistochemistry were performed to determine whether phosphorylation of mTOR and activation of its downstream molecules eIF4E-binding protein-1 (4E-BP1) and p70 S6 kinase and the upstream modulator of mTOR, Akt, were expressed in margins overexpressing eIF4E. RESULTS: There was a significant association between phospho-4E-BP1 and eIF4E expression of a margin or a significant difference in phospho-4E-BP1 expression between the eIF4E-positive and -negative margins (P < 0.01). A significant association between eIF4E and phospho-p70 S6 kinase as well as eIF4E and phospho-mTOR was also noted (P < 0.05). Western blot analysis indicated a highly significant difference in the phosphorylation status of 4E-BP1 between tumors and resection margins. A total of 89% of the 4E-BP1-expressing margins expressed more of the phosphorylated (beta, gamma, and delta) isoforms, whereas 81% of the 4E-BP1-expressing tumors expressed more of the unphosphorylated alpha isoform. A similar difference in Akt activation was noted between eIF4E-positive margins and tumors (P < 0.05). CONCLUSIONS: Overexpression of eIF4E is functionally active in tumor margins through activation of the Akt/mTOR signaling pathway. The greater degree of expression of downstream targets and upstream regulators of mTOR in margins compared with the tumors indicates preferential activation of the Akt/mTOR signaling pathway in margins overexpressing eIF4E. Rapamycin analogs can potentially be used as adjuvant therapy for patients with eIF4E-positive margins.  相似文献   
6.
7.
8.
9.
Multiply inverted balancer chromosomes that suppress exchange with their homologs are an essential part of the Drosophila melanogaster genetic toolkit. Despite their widespread use, the organization of balancer chromosomes has not been characterized at the molecular level, and the degree of sequence variation among copies of balancer chromosomes is unknown. To map inversion breakpoints and study potential diversity in descendants of a structurally identical balancer chromosome, we sequenced a panel of laboratory stocks containing the most widely used X chromosome balancer, First Multiple 7 (FM7). We mapped the locations of FM7 breakpoints to precise euchromatic coordinates and identified the flanking sequence of breakpoints in heterochromatic regions. Analysis of SNP variation revealed megabase-scale blocks of sequence divergence among currently used FM7 stocks. We present evidence that this divergence arose through rare double-crossover events that replaced a female-sterile allele of the singed gene (snX2) on FM7c with a sequence from balanced chromosomes. We propose that although double-crossover events are rare in individual crosses, many FM7c chromosomes in the Bloomington Drosophila Stock Center have lost snX2 by this mechanism on a historical timescale. Finally, we characterize the original allele of the Bar gene (B1) that is carried on FM7, and validate the hypothesis that the origin and subsequent reversion of the B1 duplication are mediated by unequal exchange. Our results reject a simple nonrecombining, clonal mode for the laboratory evolution of balancer chromosomes and have implications for how balancer chromosomes should be used in the design and interpretation of genetic experiments in Drosophila.Balancer chromosomes are genetically engineered chromosomes that suppress crossing over with their homologs and are used for many purposes in genetics, including construction of complex genotypes, maintenance of stocks, and estimation of mutation rates. Balancers typically carry multiple inversions that suppress genetic exchange or result in the formation of abnormal meiotic products if crossing over does occur (Fig. 1A); for example, single crossovers inside the inverted segment create acentric or dicentric chromosomes that will fail to segregate properly during meiosis or large deletions or duplications that will likely result in inviable gametes (1, 2). Balancers also often carry recessive lethal or sterile mutations to prevent their propagation as homozygotes as well as dominant markers for easy identification. First developed for use in Drosophila melanogaster, balancer chromosomes remain some of the most powerful tools for genetic analysis in this species (3).Open in a separate windowFig. 1.Consequences of a single or double crossover between a WT X chromosome and an X chromosome carrying a single inversion, In(1)dl-49. Euchromatin is shown in blue, heterochromatin is shown in gray, and centromeres are depicted as circles. Thin white lines mark locations of inversion breakpoints, and yellow crosses/thin lines mark locations of crossover events. (A) A single crossover event within the inverted segment results in the formation of chromosomes with deletions and zero (acentric) centromeres or duplications and two (dicentric) centromeres, neither of which will segregate properly during meiosis. (B) A double crossover within an inverted segment results in intact chromosomes with one centromere that will segregate properly during meiosis.Despite their widespread use, very little is known about the organization of Drosophila balancer chromosomes at the molecular level. Since their original syntheses decades ago, balancers have undergone many manipulations, including the addition or removal of genetic markers. Moreover, rare recombination events can cause spontaneous loss of deleterious alleles on chromosomes kept over balancers in stock, as well as loss of marker alleles on balancer chromosomes themselves (3). Likewise, recent evidence has shown that sequence variants can be exchanged between balancer chromosomes and their wild type (WT) homologs via gene conversion during stock construction or maintenance (4, 5). Thus, substantial variation may exist among structurally identical balancer chromosomes owing to various types of sequence exchange.To gain insight into the structure and evolution of balancer chromosomes, we have undertaken a genomic analysis of the most commonly used X chromosome balancer in D. melanogaster, First Multiple 7 (FM7). We have focused on FM7 because this X chromosome balancer series lacks lethal mutations and thus can be easily sequenced in a hemizygous or homozygous state. In addition, the FM7 chromosome has been shown to pair normally along most of its axis with a standard X chromosome, providing a structural basis for possible exchange events (6). Moreover, although details of how early balancers in D. melanogaster were created are not fully recorded, the synthesis and cytology of the FM7 series is reasonably well documented (3).The earliest chromosome in the FM7 series, FM7a, was constructed using two progenitor X chromosome balancers, FM1 and FM6, to create a chromosome carrying three inversions—In(1)sc8, In(1)dl-49, and In(1)FM6—relative to the WT configuration (7, 8) (Fig. 2A). Subsequently, a female-sterile allele of singed (snX2) was introduced onto FM7a to create FM7c, which prevents the loss of balanced chromosomes carrying recessive lethal or female-sterile mutations (9). More recently, versions of FM7a and FM7c have been generated that carry transgene insertions that allow the determination of balancer genotypes in embryonic or pupal stages (1014).Open in a separate windowFig. 2.Structure of the FM7 balancer chromosome. Euchromatin is shown in blue, and heterochromatin is shown in gray. (A) Schematic view of the organization of WT and FM7 X chromosomes. FM7 contains three inversions—In(1)sc8, In(1)dl-49, and In(1)FM6—relative to WT. The six breakpoint junctions for the three inversions are numbered 1–6 and are shown in detail in B. (B) Location and organization of inversion breakpoints in FM7. Each inversion has two breakpoints that can be represented as A/B and C/D in the standard WT arrangement and as A/C and B/D in the inverted FM7 arrangement, where A, B, C, and D represent the sequences on either side of the breakpoints. Locations of euchromatic breakpoints are on Release 5 genome coordinates, and the identity of the best BLAST match in FlyBase is shown for heterochromatic sequences. Primers used for PCR amplification are shown above each breakpoint; details are provided in Methods and Datasets S2 and S3. Forward and reverse primers are named with respect to the orientation of the assembled breakpoint contigs, not the orientation of the WT or FM7 X chromosome.To identify the inversion breakpoints in FM7 balancers and to study patterns of sequence variation that may have arisen since the origin of the FM7 series, we sequenced genomes of eight D. melanogaster stocks carrying the FM7 chromosome (four FM7a and four FM7c). We discovered several megabase-scale regions in which FM7c chromosomes differ from one another, which presumably arose via double-crossover (DCO) events from balanced chromosomes (Fig. 1B). These DCOs eliminate the female-sterile snX2 allele in the centrally located In(1)dl-49 inversion and are expected to confer a fitness advantage to sn+ chromosomes, either by allowing propagation of sn+ FM7 as homozygotes in females or by sn+ FM7 males outcompeting snX2 FM7 males in culture. We found that loss of the snX2 allele is common in FM7c chromosomes by screening other FM7c-carrying stocks at the Bloomington Drosophila Stock Center. We also identified the breakpoints of the B1 duplication carried on FM7, and found direct molecular evidence for the role of unequal exchange in the origin and reversion of the B1 allele (1519). Our results provide clear evidence that the common assumption that balancers are fully nonrecombining chromosomes is incorrect on a historical timescale, and that substantial sequence variation exists among balancer chromosomes in circulation today.  相似文献   
10.

Background

Nanoparticles (NPs) play an important role in anticancer delivery systems. Surface modified NPs with hydrophilic polymers such as human serum albumin (HSA) have long half-life in the blood circulation system.

Methods

The method of modified nanoprecipitation was utilized for encapsulation of paclitaxel (PTX) in poly (lactic-co-glycolic acid) (PLGA). Para-maleimide benzoic hydrazide was conjugated to PLGA for the surface modifications of PLGA NPs, and then HSA was attached on the surface of prepared NPs by maleimide attachment to thiol groups (cysteines) of albumin. The application of HSA provides for the longer blood circulation of stealth NPs due to their escape from reticuloendothelial system (RES). Then the physicochemical properties of NPs like surface morphology, size, zeta potential, and in-vitro drug release were analyzed.

Results

The particle size of NPs ranged from 170 to 190 nm and increased about 20–30 nm after HSA conjugation. The zeta potential was about -6 mV and it decreased further after HSA conjugation. The HSA conjugation in prepared NPs was proved by Fourier transform infrared (FT-IR) spectroscopy, faster degradation of HSA in Differential scanning calorimetry (DSC) characterization, and other evidences such as the increasing in size and the decreasing in zeta potential. The PTX released in a biphasic mode for all colloidal suspensions. A sustained release profile for approximately 33 days was detected after a burst effect of the loaded drug. The in vitro cytotoxicity evaluation also indicated that the HSA NPs are more cytotoxic than plain NPs.

Conclusions

HSA decoration of PLGA NPs may be a suitable method for longer blood circulation of NPs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号