首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87篇
  免费   1篇
基础医学   25篇
临床医学   2篇
神经病学   3篇
特种医学   8篇
外科学   4篇
预防医学   2篇
肿瘤学   44篇
  2022年   1篇
  2021年   1篇
  2019年   5篇
  2018年   2篇
  2015年   1篇
  2014年   1篇
  2013年   5篇
  2012年   7篇
  2011年   5篇
  2010年   3篇
  2009年   3篇
  2008年   5篇
  2007年   3篇
  2006年   4篇
  2005年   3篇
  2004年   6篇
  2003年   6篇
  2002年   7篇
  2001年   6篇
  2000年   7篇
  1999年   4篇
  1998年   3篇
排序方式: 共有88条查询结果,搜索用时 15 毫秒
1.
With the development of conformal radiotherapy, particularly intensity modulated radiation therapy (IMRT), there is a clear need for multidimensional dosimeters. A commercial polymerizing gel, BANG-2 gel (MGS Research, Inc., Guilford, CT), has recently been developed that shows potential as a multi-dimensional dosimeter. This study investigates and characterizes the noise and magnetic resonance (MR) artifacts from imaging BANG-2 gels. Seven cylindrical vials (4 cm diam, 20 cm length) were irradiated end on in a water bath and read using MRI (B0=1.5 T, TE=20 ms/100 ms, TR=3000 ms). The gel calibration compared the measured depth-dose distributions in water against the change in solvent-proton R2 relaxivity of the gel. A larger vial (13 cm diam, 14 cm length) was also irradiated to test the calibration accuracy in a vial of sufficient volume for dose distribution measurements. The calibration curve proved accurate to within 1.3% in determining the depth dose measured by the larger vial. An investigation of the voxel-to-voxel (IXIX 3 mm3) noise and sensitivity response curve showed that the voxel-to-voxel variation dominated the dose measurement uncertainty. The voxel-to-voxel standard deviation ranged from 0.2 Gy for the unirradiated gel to 0.7 Gy at 20 Gy. Slice-to-slice R2 magnitude deviations were also observed corresponding to 0.2 Gy. These variations limited the overall accuracy of the gel dose measurements and warrant an investigation of more accurate MR readout sequences.  相似文献   
2.
We have developed a four-dimensional computed tomography (4D CT) technique for mapping breathing motion in radiotherapy treatment planning. A multislice CT scanner (1.5 mm slices) operated in ciné mode was used to acquire 12 contiguous slices in each couch position for 15 consecutive scans (0.5 s rotation, 0.25 s between scans) while the patient underwent simultaneous quantitative spirometry measurements to provide a sorting metric. The spirometry-sorted scans were used to reconstruct a 4D data set. A critical factor for 4D CT is quantifying the reconstructed data set quality which we measure by correlating the metric used relative to internal-object motion. For this study, the internal air content within the lung was used as a surrogate for internal motion measurements. Thresholding and image morphological operations were applied to delineate the air-containing tissues (lungs, trachea) from each CT slice. The Hounsfield values were converted to the internal air content (V). The relationship between the air content and spirometer-measured tidal volume (v) was found to be quite linear throughout the lungs and was used to estimate the overall accuracy and precision of tidal volume-sorted 4D CT. Inspection of the CT-scan air content as a function of tidal volume showed excellent correlations (typically r>0.99) throughout the lung volume. Because of the discovered linear relationship, the ratio of internal air content to tidal volume was indicative of the fraction of air change in each couch position. Theoretically, due to air density differences within the lung and in room, the sum of these ratios would equal 1.11. For 12 patients, the mean value was 1.08 +/- 0.06, indicating the high quality of spirometry-based image sorting. The residual of a first-order fit between v and V was used to estimate the process precision. For all patients, the precision was better than 8%, with a mean value of 5.1% +/- 1.9%. This quantitative analysis highlights the value of using spirometry as the metric in sorting CT scans. The 4D reconstruction provides the CT data required to measure the three-dimensional trajectory of tumor and lung tissue during free breathing.  相似文献   
3.

To examine the health status of Hispanic agricultural workers in Florida and Georgia. Health data from agricultural workers in the Farm Worker Family Health Program (June 2019) and research studies in Florida (May 2015 and May 2019) were examined. Data from 728 agricultural workers were collected through sociodemographic questionnaire and clinical data. In the Florida sample, 83% were overweight or obese, 70% elevated blood pressure, 60% met the definition of prediabetes. In Georgia, 64% were overweight or obese and 67% had elevated blood pressure. Weak correlations were observed between BMI and systolic blood pressure (unadjusted r?=?0.20), diastolic blood pressure (unadjusted r?=?0.19), and glucose (unadjusted r?=?0.14). Adjusting for age and gender did not show statistically significant correlation between BMI and systolic and diastolic blood pressure or glucose. While BMI has been shown to be strongly associated with high blood pressure and impaired glucose, we found a weak correlation among agricultural workers. Given the common and high use of pesticides and elevated rates of hypertension, impaired glucose, and adiposity in agricultural workers, the public health impact of this relationship may require and lead to occupational reform that protects the health of agricultural workers. Future studies should assess occupational and environmental factors and lifestyle differences between agricultural workers and the general population to better understand these discrepancies in health status.

  相似文献   
4.
MicroRT-small animal conformal irradiator   总被引:1,自引:0,他引:1  
A novel small animal conformal radiation therapy system has been designed and prototyped: MicroRT. The microRT system integrates multimodality imaging, radiation treatment planning, and conformal radiation therapy that utilizes a clinical 192Ir isotope high dose rate source as the radiation source (teletherapy). A multiparameter dose calculation algorithm based on Monte Carlo dose distribution simulations is used to efficiently and accurately calculate doses for treatment planning purposes. A series of precisely machined tungsten collimators mounted onto a cylindrical collimator assembly is used to provide the radiation beam portals. The current design allows a source-to-target distance range of 1-8 cm at four beam angles: 0 degrees (beam oriented down), 90 degrees, 180 degrees, and 270 degrees. The animal is anesthetized and placed in an immobilization device with built-in fiducial markers and scanned using a computed tomography, magnetic resonance, or positron emission tomography scanner prior to irradiation. Treatment plans using up to four beam orientations are created utilizing a custom treatment planning system-microRTP. A three-axis computer-controlled stage that supports and accurately positions the animals is programmed to place the animal relative to the radiation beams according to the microRTP plan. The microRT system positioning accuracy was found to be submillimeter. The radiation source is guided through one of four catheter channels and placed in line with the tungsten collimators to deliver the conformal radiation treatment. The microRT hardware specifications, the accuracy of the treatment planning and positioning systems, and some typical procedures for radiobiological experiments that can be performed with the microRT device are presented.  相似文献   
5.
6.
INTRODUCTION: The demand for computed tomography (CT) virtual simulation is constantly increasing with the wider adoption of three-dimensional conformal and intensity-modulated radiation therapy. Virtual simulation CT studies are typically acquired on conventional diagnostic scanners equipped with an external patient positioning laser system and specialized planning and visualization software. Virtual simulation technology has matured to a point where conventional simulators may be replaced with CT scanners. However, diagnostic CT scanner gantry bores (typically 65-70 cm) can present an obstacle to the CT simulation process by limiting patient positions, compared to those that can be attained in a conventional simulator. For example, breast cancer patients cannot always be scanned in the treatment position without compromising reproducibility and appropriateness of setup. Extremely large patients or patients requiring special immobilization or large setup devices are often unable to enter the limited-bore gantry. A dedicated 85-cm-bore radiation oncology CT scanner has the potential to eliminate these problems. The scanner should provide diagnostic-quality images at diagnostic-comparable dose levels. The purpose of this study was to independently evaluate the performance of a novel 85-cm-bore CT X-ray scanner designed specifically for radiation oncology and compare it against diagnostic-type, 70-cm-bore scanners that may be used in the same setting. MATERIALS AND METHODS: We performed image quality and dosimetric measurements on an 85-cm-bore CT scanner (AcQSim CT, Marconi Medical Systems, Inc., Cleveland, OH) and a 70-cm-bore, diagnostic-type scanner (UltraZ CT, Marconi Medical Systems, Inc.). Image quality measurements were performed using a manufacturer-supplied phantom (Performance Phantom, Marconi Medical Systems, Inc.), following the manufacturer's suggested testing procedures, and an independent image quality phantom (CATPHAN 500, The Phantom Laboratory, New York, NY). The standard image quality parameters evaluated for the purpose of comparison were as follows: slice thickness accuracy, high-contrast resolution (limiting spatial resolution), low-contrast resolution, uniformity and noise, and CT number accuracy and linearity. Standard head and body protocols were employed throughout most of our measurements and were kept equal between the two scanners. The computed tomography dose index was measured for standard head and body imaging protocols using accepted methods and procedures. For comparison purposes, data for a diagnostic-type, 70-cm-bore scanner (GE HighSpeed CT/i) were extracted from the literature. The results obtained for the 85-cm-bore scanner are compared with the following: (1) manufacturer-provided autoperformance phantom test results (validating its use for routine quality assurance), (2) a similar set of measurements performed on a conventional 70-cm-bore, diagnostic-type CT scanner (UltraZ CT, Marconi Medical Systems, Inc.), and (3) current available data on other diagnostic-type CT scanners (GE HighSpeed CT/i). RESULTS: Head and body doses seem on average to be slightly (1-2 cGy) higher for the 85-cm-bore unit than for conventional 70-cm units. Measured slice thickness was within acceptable criteria, +/-0.5 mm. There does not seem to be any significant difference in high-contrast resolution. Both units render a limiting value of approximately 7-8 lp/cm for slice thickness 8-10 mm. Both units exhibit comparable CT number uniformity, accuracy, and linearity. Noise levels seem to be slightly increased (by approximately 0.05-0.2%) for the large-bore geometry. Low-contrast resolution for both units was comparable (4.5-5.5 mm @ 0.35%). All image quality parameters are well within diagnostic acceptable levels. CONCLUSION: The overall imaging performance and mechanical integrity of the 85-cm-bore scanner are comparable to those of conventional diagnostic scanners that may be employed in a radiation oncology setting.  相似文献   
7.
We analysed the clinical profile of antineutrophil cytoplasmic antibodies (ANCA) positive patients in a retrospective study including all cases of ANCA positivity (determined by ELISA) from the Nephrology Clinic, Parhon University Hospital Iasi during the interval 1998-2003. There were 97 ANCA positive patients (mean age 43.7 ?18-75? years, female/male ratio 1.55), of whom almost two thirds had c-ANCA, almost one third p-ANCA, while 9 patients had both types of antibodies. The incidence was 22.5/pmp for the North-Eastern province of Romania. Just 19.3% from the suspected cases with ANCA-associated disease were positive for these antibodies. 47.7% had systemic vasculitis (10 with microscopic polyangiitis--MA, 6 with Wegener's granulomatosis--WG, 1 with Churg-Strauss angiitis, 29 with non-specific vasculitis--NSV). Twenty-seven (27.8%) had connective tissue disease--CTD (systemic lupus erythematosus, rheumatoid arthritis, polymyositis, systemic sclerosis, mixed connective tissue disease, and sarcoidosis), while in 5 cases ANCA were associated with other diseases. Nine cases presented with rapid progressive glomerulonephritis (RPGN) without signs of systemic involvement, and other ten with advanced chronic renal failure (CRF). The most frequent clinical manifestations involved the kidney (71%), the skin, the muscles and joints, and the cardiovascular system. CONCLUSIONS: ANCA positivity is associated with a wide spectrum of diseases, mostly with CTD and NSV. c-ANCA was predominantly seen in WG and advanced CRF, while p-ANCA was associated with MA. In nonspecific vasculitis and connective tissue diseases, both patterns were present. We recommend ANCA determination as a screening method in all cases with renal dysfunction and nephritic syndrome and/or with signs of systemic vasculitis and/or collagenosis.  相似文献   
8.
The purpose of this paper is to develop a biomechanical model for free-breathing motion and compare it to a published heuristic five-dimensional (5D) free-breathing lung motion model. An ab initio biomechanical model was developed to describe the motion of lung tissue during free breathing by analyzing the stress-strain relationship inside lung tissue. The first-order approximation of the biomechanical model was equivalent to a heuristic 5D free-breathing lung motion model proposed by Low et al in 2005 (Int. J. Radiat. Oncol. Biol. Phys. 63 921-9), in which the motion was broken down to a linear expansion component and a hysteresis component. To test the biomechanical model, parameters that characterize expansion, hysteresis and angles between the two motion components were reported independently and compared between two models. The biomechanical model agreed well with the heuristic model within 5.5% in the left lungs and 1.5% in the right lungs for patients without lung cancer. The biomechanical model predicted that a histogram of angles between the two motion components should have two peaks at 39.8° and 140.2° in the left lungs and 37.1° and 142.9° in the right lungs. The data from the 5D model verified the existence of those peaks at 41.2° and 148.2° in the left lungs and 40.1° and 140° in the right lungs for patients without lung cancer. Similar results were also observed for the patients with lung cancer, but with greater discrepancies. The maximum-likelihood estimation of hysteresis magnitude was reported to be 2.6 mm for the lung cancer patients. The first-order approximation of the biomechanical model fit the heuristic 5D model very well. The biomechanical model provided new insights into breathing motion with specific focus on motion trajectory hysteresis.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号