首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   204643篇
  免费   3554篇
  国内免费   69篇
耳鼻咽喉   1399篇
儿科学   7637篇
妇产科学   3784篇
基础医学   20504篇
口腔科学   1920篇
临床医学   16131篇
内科学   36377篇
皮肤病学   1031篇
神经病学   19103篇
特种医学   9727篇
外科学   32792篇
综合类   2829篇
一般理论   47篇
预防医学   21411篇
眼科学   3272篇
药学   11278篇
  1篇
中国医学   648篇
肿瘤学   18375篇
  2023年   211篇
  2022年   374篇
  2021年   790篇
  2020年   501篇
  2019年   834篇
  2018年   22755篇
  2017年   17936篇
  2016年   20112篇
  2015年   1679篇
  2014年   1910篇
  2013年   2259篇
  2012年   9266篇
  2011年   23292篇
  2010年   19986篇
  2009年   12579篇
  2008年   21340篇
  2007年   23600篇
  2006年   2550篇
  2005年   4119篇
  2004年   5051篇
  2003年   5863篇
  2002年   3908篇
  2001年   537篇
  2000年   674篇
  1999年   424篇
  1998年   482篇
  1997年   453篇
  1996年   296篇
  1995年   272篇
  1994年   270篇
  1993年   228篇
  1992年   170篇
  1991年   242篇
  1990年   237篇
  1989年   210篇
  1988年   175篇
  1987年   152篇
  1986年   147篇
  1985年   129篇
  1984年   133篇
  1983年   140篇
  1982年   139篇
  1981年   117篇
  1980年   151篇
  1979年   125篇
  1978年   107篇
  1977年   78篇
  1976年   74篇
  1975年   90篇
  1974年   91篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The coronavirus 2019 pandemic has affected almost every aspect of health care delivery in the United States, and the emergency medicine system has been hit particularly hard while dealing with this public health crisis. In an unprecedented time in our history, medical systems and clinicians have been asked to be creative, flexible, and innovative, all while continuing to uphold the important standards in the US health care system. To continue providing quality services to patients during this extraordinary time, care providers, organizations, administrators, and insurers have needed to alter longstanding models and procedures to respond to the dynamics of a pandemic. The Emergency Medicine Treatment and Active Labor Act of 1986, or EMTALA, is 1 example of where these alterations have allowed health care facilities and clinicians to continue their work of caring for patients while protecting both the patients and the clinicians themselves from infectious exposures at the same time.  相似文献   
2.
Metabolism describes the series of chemical reactions that are concerned with the provision of energy to biological systems. They may be divided into reactions involved in energy yield (catabolism: demand exceeds supply), and energy storage (anabolism: supply exceeds demand). Regulation of these pathways is critical for homeostasis, and derangements in metabolism are seen in a wide variety of pathological processes. Understanding metabolism is key to the treatment of many diseases, notably diabetes, as well as underpinning clinical nutritional support.  相似文献   
3.
Magnetic field generated by neuronal activity could alter magnetic resonance imaging (MRI) signals but detection of such signal is under debate. Previous researches proposed that magnitude signal change is below current detectable level, but phase signal change (PSC) may be measurable with current MRI systems. Optimal imaging parameters like echo time, voxel size and external field direction, could increase the probability of detection of this small signal change. We simulate a voxel of cortical column to determine effect of such parameters on PSC signal. We extended a laminar network model for somatosensory cortex to find neuronal current in each segment of pyramidal neurons (PN). 60,000 PNs of simulated network were positioned randomly in a voxel. Biot–savart law applied to calculate neuronal magnetic field and additional phase. The procedure repeated for eleven neuronal arrangements in the voxel. PSC signal variation with the echo time and voxel size was assessed. The simulated results show that PSC signal increases with echo time, especially 100/80 ms after stimulus for gradient echo/spin echo sequence. It can be up to 0.1 mrad for echo time = 175 ms and voxel size = 1.48 × 1.48 × 2.18 mm3. With echo time less than 25 ms after stimulus, it was just acquired effects of physiological noise on PSC signal. The absolute value of the signal increased with decrease of voxel size, but its components had complex variation. External field orthogonal to local surface of cortex maximizes the signal. Expected PSC signal for tactile detection in the somatosensory cortex increase with echo time and have no oscillation.  相似文献   
4.
5.
6.
Farnesyltransferase (FTase) is one of the prenyltransferase family enzymes that catalyse the transfer of 15-membered isoprenoid (farnesyl) moiety to the cysteine of CAAX motif-containing proteins including Rho and Ras family of G proteins. Inhibitors of FTase act as drugs for cancer, malaria, progeria and other diseases. In the present investigation, we have developed two structure-based pharmacophore models from protein–ligand complex (3E33 and 3E37) obtained from the protein data bank. Molecular dynamics (MD) simulations were performed on the complexes, and different conformers of the same complex were generated. These conformers were undergone protein–ligand interaction fingerprint (PLIF) analysis, and the fingerprint bits have been used for structure-based pharmacophore model development. The PLIF results showed that Lys164, Tyr166, TrpB106 and TyrB361 are the major interacting residues in both the complexes. The RMSD and RMSF analyses on the MD-simulated systems showed that the absence of FPP in the complex 3E37 has significant effect in the conformational changes of the ligands. During this conformational change, some interactions between the protein and the ligands are lost, but regained after some simulations (after 2 ns). The structure-based pharmacophore models showed that the hydrophobic and acceptor contours are predominantly present in the models. The pharmacophore models were validated using reference compounds, which significantly identified as HITs with smaller RMSD values. The developed structure-based pharmacophore models are significant, and the methodology used in this study is novel from the existing methods (the original X-ray crystallographic coordination of the ligands is used for the model building). In our study, along with the original coordination of the ligand, different conformers of the same complex (protein–ligand) are used. It concluded that the developed methodology is significant for the virtual screening of novel molecules on different targets.  相似文献   
7.
This paper takes a somewhat slant perspective on flourishing and care in the context of suffering, death and dying, arguing that care in this context consists principally of ‘acts of work and courage that enable flourishing’. Starting with the perception that individuals, society and health care professionals have become dulled to death and the process of dying in Western advanced health systems, it suggests that for flourishing to occur, both of these aspects of life need to be faced more directly. The last days of life need to be ‘undulled’. Reflections upon the experiences of the author as carer and daughter in the face of her mother’s experience of death are used as basis for making suggestions about how care systems and professionals might better assist people in dealing with ‘the most grown up thing’ humans ever do, which is to die.  相似文献   
8.
9.
Advancing nanomedicines from concept to clinic requires integration of new science with traditional pharmaceutical development. The medical and commercial success of nanomedicines is greatly facilitated when those charged with developing nanomedicines are cognizant of the unique opportunities and technical challenges that these products present. These individuals must also be knowledgeable about the processes of clinical and product development, including regulatory considerations, to maximize the odds for successful product registration. This article outlines these topics with a goal to accelerate the combination of academic innovation with collaborative industrial scientists who understand pharmaceutical development and regulatory approval requirements—only together can they realize the full potential of nanomedicines for patients.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号