首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   220篇
  免费   13篇
儿科学   22篇
妇产科学   3篇
基础医学   87篇
临床医学   39篇
内科学   44篇
皮肤病学   2篇
神经病学   6篇
外科学   8篇
预防医学   3篇
眼科学   2篇
药学   4篇
肿瘤学   13篇
  2023年   3篇
  2022年   1篇
  2021年   11篇
  2019年   7篇
  2018年   7篇
  2017年   8篇
  2016年   5篇
  2015年   12篇
  2014年   15篇
  2013年   12篇
  2012年   22篇
  2011年   32篇
  2010年   13篇
  2009年   7篇
  2008年   14篇
  2007年   25篇
  2006年   15篇
  2005年   7篇
  2004年   9篇
  2003年   6篇
  2001年   1篇
  2000年   1篇
排序方式: 共有233条查询结果,搜索用时 31 毫秒
1.
Five TLRs are thought to play an important role in antiviral immunity, sensing viral products and inducing IFN-alpha/beta and -lambda. Surprisingly, patients with a defect of IRAK-4, a critical kinase downstream from TLRs, are resistant to common viruses. We show here that IFN-alpha/beta and -lambda induction via TLR-7, TLR-8, and TLR-9 was abolished in IRAK-4-deficient blood cells. In contrast, IFN-alpha/beta and -lambda were induced normally by TLR-3 and TLR-4 agonists. Moreover, IFN-beta and -lambda were normally induced by TLR-3 agonists and viruses in IRAK-4-deficient fibroblasts. We further show that IFN-alpha/beta and -lambda production in response to 9 of 11 viruses tested was normal or weakly affected in IRAK-4-deficient blood cells. Thus, IRAK-4-deficient patients may control viral infections by TLR-3- and TLR-4-dependent and/or TLR-independent production of IFNs. The TLR-7-, TLR-8-, and TLR-9-dependent induction of IFN-alpha/beta and -lambda is strictly IRAK-4 dependent and paradoxically redundant for protective immunity to most viruses in humans.  相似文献   
2.
3.
Copy number heterogeneity is a prominent feature within tumors. The molecular basis for this heterogeneity remains poorly characterized. Here, we demonstrate that hypoxia induces transient site-specific copy gains (TSSGs) in primary, nontransformed, and transformed human cells. Hypoxia-driven copy gains are not dependent on HIF1α or HIF2α; however, they are dependent on the KDM4A histone demethylase and are blocked by inhibition of KDM4A with a small molecule or the natural metabolite succinate. Furthermore, this response is conserved at a syntenic region in zebrafish cells. Regions with site-specific copy gain are also enriched for amplifications in hypoxic primary tumors. These tumors exhibited amplification and overexpression of the drug resistance gene CKS1B, which we recapitulated in hypoxic breast cancer cells. Our results demonstrate that hypoxia provides a biological stimulus to create transient site-specific copy alterations that could result in heterogeneity within tumors and cell populations. These findings have major implications in our understanding of copy number heterogeneity and the emergence of drug resistance genes in cancer.  相似文献   
4.
5.
6.
7.
8.
Chronic mucocutaneous candidiasis (CMC) is characterized by recurrent or persistent infections of the skin, nail, oral, and genital mucosae with Candida species, mainly C. albicans. Autosomal-recessive (AR) IL-17RA and ACT1 deficiencies and autosomal-dominant IL-17F deficiency, each reported in a single kindred, underlie CMC in otherwise healthy patients. We report three patients from unrelated kindreds, aged 8, 12, and 37 yr with isolated CMC, who display AR IL-17RC deficiency. The patients are homozygous for different nonsense alleles that prevent the expression of IL-17RC on the cell surface. The defect is complete, abolishing cellular responses to IL-17A and IL-17F homo- and heterodimers. However, in contrast to what is observed for the IL-17RA– and ACT1-deficient patients tested, the response to IL-17E (IL-25) is maintained in these IL-17RC–deficient patients. These experiments of nature indicate that human IL-17RC is essential for mucocutaneous immunity to C. albicans but is otherwise largely redundant.In humans, chronic mucocutaneous candidiasis (CMC) is characterized by infections of the skin, nail, digestive, and genital mucosae with Candida species, mainly C. albicans, a commensal of the gastrointestinal tract in healthy individuals (Puel et al., 2012). CMC is frequent in acquired or inherited disorders involving profound T cell defects (Puel et al., 2010b; Vinh, 2011; Lionakis, 2012). Human IL-17 immunity has recently been shown to be essential for mucocutaneous protection against C. albicans (Puel et al., 2010b, 2012; Cypowyj et al., 2012; Engelhardt and Grimbacher, 2012; Huppler et al., 2012; Ling and Puel, 2014). Indeed, patients with primary immunodeficiencies and syndromic CMC have been shown to display impaired IL-17 immunity (Puel et al., 2010b). Most patients with autosomal-dominant (AD) hyper-IgE syndrome (AD-HIES) and STAT3 deficiency (de Beaucoudrey et al., 2008; Ma et al., 2008; Milner et al., 2008; Renner et al., 2008; Chandesris et al., 2012) and some patients with invasive fungal infection and autosomal-recessive (AR) CARD9 deficiency (Glocker et al., 2009; Lanternier et al., 2013) or Mendelian susceptibility to mycobacterial diseases (MSMD) and AR IL-12p40 or IL-12Rβ1 deficiency (de Beaucoudrey et al., 2008, 2010; Prando et al., 2013; Ouederni et al., 2014) have low proportions of IL-17A–producing T cells and CMC (Cypowyj et al., 2012; Puel et al., 2012). Patients with AR autoimmune polyendocrine syndrome type 1 (APS-1) and AIRE deficiency display CMC and high levels of neutralizing autoantibodies against IL-17A, IL-17F, and/or IL-22 (Browne and Holland, 2010; Husebye and Anderson, 2010; Kisand et al., 2010, 2011; Puel et al., 2010a).These findings paved the way for the discovery of the first genetic etiologies of CMC disease (CMCD), an inherited condition affecting individuals with none of the aforementioned primary immunodeficiencies (Puel et al., 2011; Casanova and Abel, 2013; Casanova et al., 2013, 2014). AR IL-17RA deficiency, AR ACT1 deficiency, and AD IL-17F deficiency were described, each in a single kindred (Puel et al., 2011; Boisson et al., 2013). A fourth genetic etiology of CMCD, which currently appears to be the most frequent, has also been reported: heterozygous gain-of-function (GOF) mutations of STAT1 impairing the development of IL-17–producing T cells (Liu et al., 2011; Smeekens et al., 2011; van de Veerdonk et al., 2011; Hori et al., 2012; Takezaki et al., 2012; Tóth et al., 2012; Al Rushood et al., 2013; Aldave et al., 2013; Romberg et al., 2013; Sampaio et al., 2013; Soltész et al., 2013; Uzel et al., 2013; Wildbaum et al., 2013; Frans et al., 2014; Kilic et al., 2014; Lee et al., 2014; Mekki et al., 2014; Mizoguchi et al., 2014; Sharfe et al., 2014; Yamazaki et al., 2014). We studied three unrelated patients with CMCD without mutations of IL17F, IL17RA, ACT1, or STAT1. We used a genome-wide approach based on whole-exome sequencing (WES). We found AR complete IL-17RC deficiency in all three patients.  相似文献   
9.
Primary immunodeficiencies are intrinsic defects in the immune system that result in a predisposition to infection and are frequently accompanied by a propensity to autoimmunity and/or immunedysregulation. Primary immunodeficiencies can be divided into innate immunodeficiencies, phagocytic deficiencies, complement deficiencies, disorders of T cells and B cells (combined immunodeficiencies), antibody deficiencies and immunodeficiencies associated with syndromes. Diseases of immune dysregulation and autoinflammatory disorder are many times also included although the immunodeficiency in these disorders are often secondary to the autoimmunity or immune dysregulation and/or secondary immunosuppression used to control these disorders. Congenital primary immunodeficiencies typically manifest early in life although delayed onset are increasingly recognized. The early diagnosis of congenital immunodeficiencies is essential for optimal management and improved outcomes. In this International Consensus (ICON) document, we provide the salient features of the most common congenital immunodeficiencies.  相似文献   
10.
X-linked recessive anhidrotic ectodermal dysplasia with immunodeficiency is a developmental and immunologic disorder caused by mutations in nuclear factor-kappaB essential modulator (NEMO), which is essential for nuclear factor-kappaB activation. Early in life, affected boys present a typical appearance, with hypotrichosis or atrichosis, hypohidrosis or anhidrosis, and hypodontia or anodontia with conical incisors. They are also susceptible to various microorganisms, mostly pyogenic bacteria and mycobacteria. Here we report 2 unrelated boys, aged 6 and 11 years, who have novel mutations in NEMO and present conical incisors and hypodontia as their sole and long-unrecognized developmental anomaly. One child had isolated recurrent pneumococcal disease, whereas the other had multiple infections. Our observations indicate that conical incisors should prompt the search for NEMO mutations in boys with unusual infectious diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号