首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   596篇
  免费   54篇
  国内免费   3篇
儿科学   2篇
妇产科学   2篇
基础医学   123篇
口腔科学   45篇
临床医学   38篇
内科学   95篇
皮肤病学   4篇
神经病学   36篇
特种医学   2篇
外科学   120篇
综合类   28篇
预防医学   42篇
眼科学   16篇
药学   52篇
中国医学   17篇
肿瘤学   31篇
  2023年   4篇
  2022年   14篇
  2021年   17篇
  2020年   14篇
  2019年   6篇
  2018年   10篇
  2017年   13篇
  2016年   11篇
  2015年   9篇
  2014年   16篇
  2013年   21篇
  2012年   27篇
  2011年   34篇
  2010年   13篇
  2009年   17篇
  2008年   30篇
  2007年   31篇
  2006年   24篇
  2005年   38篇
  2004年   25篇
  2003年   21篇
  2002年   22篇
  2001年   26篇
  2000年   23篇
  1999年   33篇
  1998年   7篇
  1997年   15篇
  1996年   5篇
  1995年   6篇
  1994年   4篇
  1993年   4篇
  1992年   11篇
  1991年   10篇
  1990年   7篇
  1989年   9篇
  1988年   8篇
  1987年   3篇
  1986年   6篇
  1985年   8篇
  1984年   4篇
  1978年   5篇
  1977年   3篇
  1976年   3篇
  1974年   3篇
  1972年   4篇
  1970年   2篇
  1969年   2篇
  1967年   4篇
  1966年   2篇
  1965年   6篇
排序方式: 共有653条查询结果,搜索用时 31 毫秒
1.
Implant surface morphology regulates osteoblast phenotypic expression. Osteoblast sensitivity to non-biologic surfaces suggests that native bone surface features may also affect osteoblast response. To test this, MG63 osteoblast-like cells were grown for 7 days on bovine cortical bone wafers pretreated with rat bone marrow osteoclasts for 0, 10 or 20 days. Response to osteoclast-treated surfaces was compared to the response of MG63 cells to titanium surfaces with smooth and rough microtopographies. Cell number, differentiation (alkaline phosphatase activity and osteocalcin levels), and local factors (PGE(2) and TGF-beta1) were measured in confluent cultures. Compared to culture on plastic, cell number was reduced on all three types of bone wafers; this effect was dose-dependent with increasing resorption of the surface. Alkaline phosphatase specific activity was increased (P相似文献   
2.
This study examined the effect of recombinant human bone morphogenetic protein-2 on several parameters of growth, differentiation, and matrix synthesis and on the endogenous production of mRNA of bone morphogenetic proteins 2 and 4 by growth plate chondrocytes in culture. Chondrocytes from resting and growth zones were obtained from rat costochondral cartilage and cultured for 24 or 48 hours in medium containing 0.05-100 ng/ml recombinant human bone morphogenetic protein-2 and 10% fetal bovine serum. Incorporation of [3H]thymidine, cell number, alkaline phosphatase specific activity, incorporation of [3H]proline into collagenase-digestible protein and noncollagenase-digestible protein, and incorporation of [35S]sulfate were assayed as indicators of cell proliferation, differentiation, and extracellular matrix synthesis. mRNA levels T for bone morphogenetic proteins 2 andv4 were determined by Northern blot analysis. Recombinant human bone morphogenetic protein-2 increased the incorporation of [3H]thymidine by quiescent resting-zone and growth-zone cells in a similar manner, whereas it had a differential effect on nonquiescent cultures. At 24 and 48 hours, 12.5-100 ng/ml recombinant human bone morphogenetic protein-2 caused a dose-dependent increase in cell number and DNA synthesis in resting-zone chondrocytes. No effect was seen in growth-zone cell Recombinant human bone morphogenetic protein-2 stimulated alkaline phosphatase specific activity in resting-zone chondrocytes in a bimodal manner, causing significant increases between 0.2 and 0.8 ng/ml and again between 25 and 100 ng/ml. In contrast, alkaline phosphatase specific activity in growth-zone chondrocytes was significantly increased only between 12.5 and 100 ng/ml. Recombinant human bone morphogenetic protein-2 increased the production of both collagenase-digestible protein and noncollagenase-digestible protein by resting-zone and growth-zone cells, but incorporation of [35S]sulfate was unaffected. Administration of recombinant human bone morphogenetic protein-2 also increased incorporation of [3H]uridine in both resting-zone and growth-zone chondrocytes; these cells produced mRNA for bone morphogenetic proteins 2 and 4. Bone morphogenetic protein-2 mRNA levels in both resting-zone and growth-zone chondrocytes increased in the presence of recombinant human bone morphogenetic protein-2; however, bone morphogenetic protein-4 mRNA levels in growth-zone cells decreased under its influence, and those in resting-zone cells were upregulated only with a dose of 10 ng/ml. This indicates that recombinant human bone morphogenetic protein-2 regulates chondrocyte proliferation, differentiation, and matrix production, and the effects are dependent on the stage of cell maturation. Resting-zone chondrocytes were more sensitive, suggesting that they are targeted by bone morphogenetic protein-2 and that this growth factor may have autocrine effects on these cells.  相似文献   
3.
Extracellular matrix vesicles (MVs) are associated with initial calcification in a variety of tissues, but the mechanisms by which they promote mineralization are not certain. In this study, MVs isolated from fourth passage rat growth plate chondrocyte cultures were included within a gelatin gel into which calcium and phosphate ions diffused from opposite ends. In this gel, apatite formation occurs by 3.5 days in the absence of mineralization promoters, allowing measurement of the ability of different factors to ``nucleate' apatite before this time or to assess the effects of molecules which modulate the rate and extent of mineral deposition. Mineral ion accumulation and crystal type are assayed at 5 days. In this study, MV protein content in the central band of a 10% gelatin gel was varied by including 100 μl of a Tris-buffered solution containing 0–300 μg/ml MV protein. There was a concentration-dependent increase in mineral accretion. Whereas 10 μg MV protein in the gel did not significantly promote apatite formation as compared with vesicle-free gels, 20 and 30 μg MV protein in the gel did promote apatite deposition. Inclusion of 10 mM β-glycerophosphate in the gels, along with MVs, did not significantly increase apatite formation despite the demonstrable alkaline phosphatase activity of the MVs. In contrast, MVs at all concentrations significantly increased apatite accumulation when proteoglycan aggregates or ATP, inhibitors of apatite formation and proliferation, were included in the gel. Slight increases in calcium, but not phosphate accumulation, were also noted when an ionophore was included with the MVs to facilitate Ca ion transport into the vesicles. FT-IR analysis of the mineral formed in the vesicle-containing gels revealed the presence of a bone-like apatite. These data suggest that MVs facilitate mineralization by providing enzymes that modify inhibitory factors in the extracellular matrix, as well as by providing a protected environment in which mineral ions can accumulate. Received: 28 January 1996 / Accepted: 9 August 1996  相似文献   
4.
Summary This study examined the presence of extracellular matrix processing enzymes in matrix vesicles produced by rat costochondral resting zone and growth zone chondrocytes in culture. Optimum procedures for the extraction of each enzyme activity were determined. Enzyme activity associated with chondrocyte plasma membrane microsomes was used for comparison. There was a differential distribution of the enzyme activities related to the cartilage zone from which the cells were isolated. Acid and neutral metalloproteinase (TIMP), plasminogen activator, and betaglucuronidase were highest in the growth zone chondrocyte (GC) membrane fractions when compared with matrix vesicles and plasma membranes isolated from resting zone chondrocyte (RC) cultures. There was a threefold enrichment of total and active acid metalloproteinase in GC matrix vesicles, whereas no enrichment in enzyme activity was observed in RC matrix vesicles. Total and active neutral metalloproteinase were similarly enriched twofold in GC matrix vesicles. TIMP, plasminogen activator, and betaglucuronidase activities were highest in the plasma membranes of both cell types. No collagenase, lysozyme, or hyaluronidase activity was found in any of the membrane fractions. The data indicate that matrix vesicles are selectively enriched in enzymes which degrade proteoglycans. The highest concentrations of these enzymes are found in matrix vesicles produced by growth zone chondrocytes, suggesting that this may be a mechanism by which the more differentiated cell modulates the matrix for calcification.  相似文献   
5.
Microtextured titanium implant surfaces enhance bone formation in vivo and osteoblast phenotypic expression in vitro, but the mechanisms are not understood. To determine the roles of specific microarchitectural features in modulating osteoblast behavior, we used Ti surfaces prepared by electrochemical micromachining as substrates for MG63 osteoblast-like cell culture. Cell response was compared to tissue culture plastic, a sand-blasted with large grit and acid-etched surface with defined mixed microtopography (SLA), polished Ti surfaces, and polished surfaces electrochemically machined through a photoresist pattern to produce cavities with 100, 30 and 10 microm diameters arranged so that the ratio of the microscopic-scale area of the cavities versus the microscopic-scale area of the flat region between the cavities was equal to 1 or 6. Microstructured disks were acid-etched, producing overall sub-micron-scale roughness (Ra=0.7 microm). Cell number, differentiation (alkaline phosphatase; osteocalcin) and local factor levels (TGF-beta1; PGE(2)) varied with microarchitecture. 100 microm cavities favored osteoblast attachment and growth, the sub-micron-scale etch enhanced differentiation and TGF-beta1 production, whereas PGE(2) depended on cavity dimensions but not the sub-micron-scale roughness.  相似文献   
6.
Stature estimation based on hand length and foot length   总被引:1,自引:0,他引:1  
This study was carried out to estimate the relationship between hand length, foot length and stature using multiple linear regression analyses based on a sample of male and female adult Turks residing in Adana. Measurements of hand length, foot length and stature were taken from 155 adult Turks (80 male, 75 female) aged 17-23 years. The participants were students of the Medical Faculty of Cukurova University. A multiple linear regression model was fitted to the observed data. Stature was taken as the response or dependent variable, hand length and foot length were taken as explanatory variables or regressors. All possible (simple and multiple) linear regression models for each of males, females and both genders together were tested for the best model. The multiple linear regression model for both genders together was found to be the best model with the highest values for the coefficients of determination R2 = 0.861 and R2adjusted = 0.859, and multiple correlation coefficient R = 0.928.  相似文献   
7.
Osteoblasts exhibit a more differentiated morphology on surfaces with rough microtopographies. Surface effects are often mediated through integrins that bind the RGD motif in cell attachment proteins. Here, we tested the hypothesis that modulating access to RGD binding sites can modify the response of osteoblasts to surface microtopography. MG63 immature osteoblast-like cells were cultured on smooth (Ti sputter-coated Si wafers) and rough (grit blasted/acid etched) Ti surfaces that were modified with adsorbed monomolecular layers of a comb-like graft copolymer, poly-(L-lysine)-g-poly(ethylene glycol) (PLL-g-PEG), to limit nonspecific protein adsorption. PLL-g-PEG coatings were functionalized with varying amounts of an integrin-receptor-binding RGD peptide GCRGYGRGDSPG (PLL-g-PEG/PEG-RGD) or a nonbinding RDG control sequence GCRGYGRDGSPG (PLL-g-PEG/PEG-RDG). Response to PLL-g-PEG alone was compared with response to surfaces on which 2-18% of the polymer sidechains were functionalized with the RGD peptide or the RDG peptide. To examine RGD dose-response, peptide surface concentration was varied between 0 and 6.4 pmol/cm(2). In addition, cells were cultured on uncoated Ti or Ti coated with PLL-g-PEG or PLL-g-PEG/PEG-RGD at an RGD surface concentration of 0.7 pmol/cm(2), and free RGDS was added to the media to block integrin binding. Analyses were performed 24 h after cultures had achieved confluence on the tissue culture plastic surface. Cell number was reduced on smooth Ti compared to plastic or glass and further decreased on surfaces coated with PLL-g-PEG or PLL-g-PEG/PEG-RDG, but was restored to control levels when PLL-g-PEG/PEG-RGD was present. Alkaline phosphatase specific activity and osteocalcin levels were increased on PLL-g-PEG alone or PLL-g-PEG/PEG-RDG, but PLL-g-PEG/PEG-RGD reduced the parameters to control levels. On rough Ti surfaces, cell number was reduced to a greater extent than on smooth Ti. PLL-g-PEG coatings reduced alkaline phosphatase and increased osteocalcin in a manner that was synergistic with surface roughness. The RDG peptide did not alter the PLL-g-PEG effect but the RGD peptide restored these markers to their control levels. PLL-g-PEG coatings also increased TGF-beta1 and PGE(2) in conditioned media of cells cultured on smooth or rough Ti; there was a 20x increase on rough Ti coated with PLL-g-PEG. PLL-g-PEG effects were inhibited dose dependently by addition of the RGD peptide to the surface. Free RGDS did not decrease the effect elicited by PLL-g-PEG surfaces. These unexpected results suggest that PLL-g-PEG may have osteogenic properties, perhaps correlated with effects that alter cell attachment and spreading, and promote a more differentiated morphology.  相似文献   
8.
[目的] 探讨解毒消痈饮治疗肛周坏死性筋膜炎术后热毒炽盛期的临床效果。[方法] 将60例肛周坏死性筋膜炎患者随机分为对照组和观察组,各30例。对照组采用术后对症支持的常规治疗+痛痒消洗剂坐浴,观察组在对照组的基础上,术后口服解毒消痈饮治疗。[结果] 观察组治疗后第3、7、14天视觉模拟评分量表(VAS)评分均低于对照组,差异具有统计学意义(P<0.05);两组治疗14 d后白细胞(WBC)、C-反应蛋白(CRP)、白细胞介素-6(IL-6)较治疗前显著减低,且观察组明显低于对照组(P<0.05),而血红蛋白(Hb)较治疗前明显升高,且观察组优于对照组(P<0.05);两组治疗14 d后坏死性筋膜炎实验室风险指数评分(LRINEC)、Fournier坏疽严重程度指数(FGSI)均较治疗前显著减低,且观察组明显低于对照组(P<0.05);观察组治疗后第7、14天创面渗液和创面水肿情况评分均低于对照组,差异具有统计学意义(P<0.05);观察组创面愈合时间较对照组短(P<0.05);观察组的总有效率优于对照组(P<0.05)。[结论] 肛周坏死性筋膜炎术后热毒炽盛期应用解毒消痈饮疗效确切,能够有效缓解术后疼痛,降低炎症反应,提高血红蛋白含量,有利于评估患者术后病情及预后,减轻术后创面渗液和创面水肿,加速创面愈合。  相似文献   
9.
BACKGROUND: Focal osteolysis due to ultra-high molecular weight polyethylene wear debris involves effects on both bone resorption and bone formation. METHODS: The response of MG63 osteoblast-like osteosarcoma cells to ultra-high molecular weight polyethylene wear debris isolated by enzymatic digestion of granulomatous tissue obtained from the sites of failed total hip arthroplasties was examined. Scanning electron microscopy, particle-size analysis, and Fourier transform infrared spectroscopy were used to characterize the number, morphology, size distribution, and chemical composition of the particles. Cell response was assessed by adding particles at varying dilutions to confluent cultures and measuring changes in cell proliferation (number of cells and [3H]-thymidine incorporation), osteoblast function (alkaline-phosphatase-specific activity and osteocalcin production), matrix production (collagen production and proteoglycan sulfation), and local cytokine production (prostaglandin-E2 production). RESULTS: The mean size of the particles was 0.60 micrometer, and 95 percent of the particles had a size of less than 1.5 micrometers. The number of particles per gram of tissue ranged from 1.39 to 3.38x10(9). Three of the four batches of particles were endotoxin-free. Exposure of the cells to particles of wear debris significantly increased the number of cells (p<0.05) and the [3H]-thymidine incorporation (p<0.05) in a dose-dependent manner. In contrast, the addition of particles decreased alkaline-phosphatase-specific activity and osteocalcin production. Collagen production and proteoglycan sulfation were also decreased, while prostaglandin-E2 synthesis was increased by the addition of particles. CONCLUSIONS: Ultra-high molecular weight polyethylene particles isolated from human tissue stimulated osteoblast proliferation and prostaglandin-E2 production and inhibited cell differentiation and matrix production. These results indicate that particles of wear debris inhibit cell functions associated with bone formation and that osteoblasts may produce factors in response to wear debris that influence neighboring cells, such as osteoclasts and macrophages. CLINICAL RELEVANCE: Particles of wear debris, especially ultra-high molecular weight polyethylene, have been implicated in the loosening of implants and the development of osteolysis. The present study shows that particles of ultra-high molecular weight polyethylene isolated from human tissue inhibit osteoblast functions associated with bone formation. In addition, particles of wear debris induced osteoblasts to secrete factors capable of influencing neighboring cells, such as osteoclasts and macrophages. These results suggest that osteoblasts may play a role in the cascade of events leading to granuloma formation, osteolysis, and failure of orthopaedic implants.  相似文献   
10.
BACKGROUND: The purpose of the present study was to create an effective bone-graft substitute for the treatment of a diaphyseal nonunion. METHODS: A standardized nonunion was established in the midportion of the radial diaphysis in thirty mongrel dogs by creating a three-millimeter segmental bone defect (at least 2 percent of the total length of the bone). The nonunion was treated with implantation of a carrier comprised of poly(DL-lactic acid) and polyglycolic acid copolymer (50:50 polylactic acid-polyglycolic acid [PLG50]) containing canine purified bone morphogenetic protein (BMP) or recombinant human transforming growth factor-beta (TGF-beta1), or both, or the carrier without BMP or TGF-beta1. Five groups, consisting of six dogs each, were treated with implantation of the carrier alone, implantation of the carrier with fifteen milligrams of BMP, implantation of the carrier with 1.5 milligrams of BMP, implantation of the carrier with fifteen milligrams of BMP and ten nanograms of TGF-beta1, or implantation of the carrier with ten nanograms of TGF-beta1. At twelve weeks after implantation, the radii were examined radiographically and the sites of nonunion were examined histomorphometrically. RESULTS: We found that implantation of the polylactic acid-polyglycolic acid carrier alone or in combination with ten nanograms of TGF-beta1 failed to induce significant radiographic or histomorphometric evidence of healing at the site of the nonunion. The radii treated with the carrier enriched with either 1.5 or fifteen milligrams of BMP showed significantly increased periosteal and endosteal bone formation on histomorphometric (p < 0.05) and radiographic (p < 0.02) analysis. CONCLUSIONS: Bone formation in a persistent osseous defect that is similar to an ununited diaphyseal fracture is increased when species-specific BMP incorporated into a polylactic acid-polyglycolic acid carrier is implanted at the site of the nonunion. TGF-beta1 at a dose of ten nanograms per implant did not induce a similar degree of bone formation or potentiate the effect of BMP in this model. CLINICAL RELEVANCE: The biodegradable implant containing BMP that was used in the present study to treat diaphyseal nonunion is an effective bone-graft substitute.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号