首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   209篇
  免费   11篇
耳鼻咽喉   2篇
基础医学   35篇
口腔科学   58篇
临床医学   13篇
内科学   5篇
神经病学   5篇
特种医学   15篇
外科学   82篇
预防医学   4篇
肿瘤学   1篇
  2023年   1篇
  2022年   2篇
  2021年   7篇
  2020年   3篇
  2019年   2篇
  2018年   6篇
  2017年   4篇
  2016年   6篇
  2015年   2篇
  2014年   5篇
  2013年   8篇
  2012年   10篇
  2011年   16篇
  2010年   8篇
  2009年   10篇
  2008年   9篇
  2007年   8篇
  2006年   5篇
  2005年   18篇
  2004年   19篇
  2003年   13篇
  2002年   12篇
  2001年   10篇
  2000年   6篇
  1999年   5篇
  1998年   2篇
  1997年   2篇
  1995年   2篇
  1994年   5篇
  1993年   4篇
  1992年   3篇
  1991年   4篇
  1990年   1篇
  1988年   1篇
  1981年   1篇
排序方式: 共有220条查询结果,搜索用时 12 毫秒
1.
Although the revision rates for modern knee prostheses have decreased drastically, the total number of revisions a year is increasing because many more primary knee replacements are being done. At the time of revision, bone loss is common, which compromises prosthetic stability. To improve stability, intramedullary stems are often used. The aim of this study was to estimate the effects of a stem, its diameter and the interface bonding conditions on patterns of the bone remodeling in the distal femur.

We created finite element models of the distal half of a femur in which 4 types of knee prostheses were placed. The bone remodeling process was simulated using a strain-adaptive bone remodeling theory. The amount of such remodeling was determined by calculating the changes in bone mineral density in 9 regions of interest from simulated DEXA scans.

The computer simulation model showed that revision prostheses tend to cause more bone resorption than primary ones, especially in the most distal regions. Predicted long-term bone loss due to a revision prosthesis with a thin stem equalled that around a prosthesis with an intercondylar box. However, strong regional differences were found- the stemmed prostheses having more bone loss in the most distal areas and some bone gain in the more proximal ones. A prosthesis with a thick stem led to an increase in bone loss. When the prosthesis-cement interface was bonded, more bone loss was predicted than with an unbonded interface. These results suggest that a stem which increases stability initially may reduce stability in the long term. This is due to an increase in stress shielding and bone resorption.  相似文献   
2.
Skeletal tissue engineering-from in vitro studies to large animal models   总被引:7,自引:0,他引:7  
Bone is a tissue with a strong regenerative potential. New strategies for tissue engineering of bone should therefore only focus on defects with a certain size that will not heal spontaneously. In the development of tissue-engineered constructs many variables may play a role, e.g. the source of the cells used, the design and mechanical properties of the scaffold and the concentration and mode of application of growth factor(s).Models for studying new strategies for tissue engineering of bone should be based on the target tissue to be restored. However, in light of the many potential variables, which may also interact if used in combination(s), there is also a large need for relatively simple models in which variables can be tested in a limited number of animals. Moreover, in compromised bone there may be a problem with the load-bearing capacity of the remaining healthy bone. In this light, an important prerequisite for tissue-engineering constructs is that they can be tested in loaded conditions. Particularly, this latter prerequisite is very difficult to achieve. Therefore, in vitro tests for mechanical stability are very useful for evaluating the mechanical consequences of a particular reconstruction procedure prior to the animal experiment. Before a tissue-engineered construct can be introduced into a clinical trial, a final test should be available in a large animal model that is as close and relevant to a particular problematic clinical situation as possible.In the past, a series of models were developed in our laboratory that are very useful for testing tissue-engineered constructs. In this paper, we focus on the use of relatively new simple in vitro and in vivo models for hip revision surgery, segmental bone defect restoration and tumour surgery.  相似文献   
3.
We analyzed the difference in angle-correction accuracy and initial stability between open-wedge (OWO) and closed-wedge tibial valgus osteotomy (CWO). Five fresh-frozen pairs of human cadaver lower limbs were used; their bone mineral density (BMD) was measured with DEXA and a planned 7° valgus osteotomy was performed, either with an open (right knees) or closed (left knees) technique. All knees for osteotomy were fixed with a rigid locked plate. In OWO, tricalcium phosphate (TCP) wedges were inserted. The knees were subjected to an increasing cyclic axial load until failure, while measuring the relative displacement of the bony segments with roentgen stereophotogrammetric analysis. The mean postoperative valgus correction angle was 9.5°±2.8° for CWO (over-correction of 2.5°) and 6.2°±2.0° for OWO (under-correction of 0.8°) (P =0.08). The data of displacement under load bearing showed no significant differences in rotations and translations in any direction. No significant correlation between BMD and the moment of failure was found (P =0.27). This study has shown that both methods gave an acceptable correction with a high variation of postoperative correction angles. There was a tendency for over-correction in the CWO group but no significant difference was found. There was no difference in initial stability between CWO and OWO with a rigid locked-plate fixation.  相似文献   
4.
Journal of Thrombosis and Thrombolysis - Coronavirus disease 2019 (COVID-19) is associated with a high incidence of venous and arterial thromboembolic events. The role of anticoagulation (AC) prior...  相似文献   
5.
6.
7.
Objectives

Patients undergoing osteoporosis treatment benefit greatly from early detection. We previously developed a computer-aided diagnosis (CAD) system to identify osteoporosis using panoramic radiographs. However, the region of interest (ROI) was relatively small, and the method to select suitable ROIs was labor-intensive. This study aimed to expand the ROI and perform semi-automatized extraction of ROIs. The diagnostic performance and operating time were also assessed.

Methods

We used panoramic radiographs and skeletal bone mineral density data of 200 postmenopausal women. Using the reference point that we defined by averaging 100 panoramic images as the lower mandibular border under the mental foramen, a 400?×?100-pixel ROI was automatically extracted and divided into four 100?×?100-pixel blocks. Valid blocks were analyzed using program 1, which examined each block separately, and program 2, which divided the blocks into smaller segments and performed scans/analyses across blocks. Diagnostic performance was evaluated using another set of 100 panoramic images.

Results

Most ROIs (97.0%) were correctly extracted. The operation time decreased to 51.4% for program 1 and to 69.3% for program 2. The sensitivity, specificity, and accuracy for identifying osteoporosis were 84.0, 68.0, and 72.0% for program 1 and 92.0, 62.7, and 70.0% for program 2, respectively. Compared with the previous conventional system, program 2 recorded a slightly higher sensitivity, although it occasionally also elicited false positives.

Conclusions

Patients at risk for osteoporosis can be identified more rapidly using this new CAD system, which may contribute to earlier detection and intervention and improved medical care.

  相似文献   
8.
A way to prevent polyethylene wear in total hip replacements is to use metal-on-metal bearings. The cup design of these bearings may be a metal inlay in a polyethylene cup. However, these metal inlays are relatively thin and may deform on loading. The purpose of the current study was to determine whether these potential problems become actual for a realistic range of metal-inlay components having a thickness greater than 1 mm. For this purpose, the effects of thickness variation of a metal inlay in an ultrahigh molecular weight polyethylene cup were determined using three-dimensional finite element techniques. The results showed no indications for jamming of the bearing assuming a realistic inlay thickness (3-5 mm), even with a small clearance (25 microm). The metal inlay acted rigidly beyond a thickness of approximately 5 mm. Metal inlays thinner than 1.5 mm led to a considerable increase in contact area and a reduction in contact peak stress, which may be beneficial for the bearing performance. Currently, these thin liners have too many unknown characteristics and therefore the current authors recommend using rigid metal liners that have a thickness greater than 5 mm.  相似文献   
9.
Although the revision rates for modern knee prostheses have decreased drastically, the total number of revisions a year is increasing because many more primary knee replacements are being done. At the time of revision, bone loss is common, which compromises prosthetic stability. To improve stability, intramedullary stems are often used. The aim of this study was to estimate the effects of a stem, its diameter and the interface bonding conditions on patterns of the bone remodeling in the distal femur. We created finite element models of the distal half of a femur in which 4 types of knee prostheses were placed. The bone remodeling process was simulated using a strain-adaptive bone remodeling theory. The amount of such remodeling was determined by calculating the changes in bone mineral density in 9 regions of interest from simulated DEXA scans. The computer simulation model showed that revision prostheses tend to cause more bone resorption than primary ones, especially in the most distal regions. Predicted long-term bone loss due to a revision prosthesis with a thin stem equalled that around a prosthesis with an intercondylar box. However, strong regional differences were found--the stemmed prostheses having more bone loss in the most distal areas and some bone gain in the more proximal ones. A prosthesis with a thick stem led to an increase in bone loss. When the prosthesis-cement interface was bonded, more bone loss was predicted than with an unbonded interface. These results suggest that a stem which increases stability initially may reduce stability in the long term. This is due to an increase in stress shielding and bone resorption.  相似文献   
10.
The mechanical characteristics of new bone cements should be assessed before these cements are released on the orthopedic market in great quantities. In this study, we present the deformational response of 3 relatively new, low-curing temperature bone cements (Cemex RX, Cemex System, and Cemex Isoplastic) to a dynamic compressive force in comparison to Simplex P bone cement. For this purpose, dynamic compressive creep tests were performed on cylindrical shaped specimens at a maximal load level of 20 MPa for a period of 250,000 cycles. The results showed that Cemex System and Cemex RX produced creep rates that were higher (20% and 30%, respectively) as compared to Simplex P bone cement. The creep behavior of Cemex Isoplastic was very similar to that of Simplex P. It was concluded that although Cemex RX and Cemex System produced higher creep rates than Simplex P, these differences were not considered excessive. Hence, although other tests are required to assess the safety and efficacy of these new cements, the dynamic creep properties under compression can be considered adequate for clinical use.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号