首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21612篇
  免费   1822篇
  国内免费   32篇
耳鼻咽喉   113篇
儿科学   744篇
妇产科学   616篇
基础医学   2833篇
口腔科学   345篇
临床医学   3254篇
内科学   4197篇
皮肤病学   340篇
神经病学   2249篇
特种医学   449篇
外科学   1883篇
综合类   487篇
一般理论   27篇
预防医学   2984篇
眼科学   376篇
药学   1374篇
  1篇
中国医学   24篇
肿瘤学   1170篇
  2023年   185篇
  2022年   256篇
  2021年   487篇
  2020年   339篇
  2019年   530篇
  2018年   605篇
  2017年   374篇
  2016年   457篇
  2015年   510篇
  2014年   728篇
  2013年   945篇
  2012年   1554篇
  2011年   1540篇
  2010年   744篇
  2009年   671篇
  2008年   1230篇
  2007年   1334篇
  2006年   1255篇
  2005年   1203篇
  2004年   1149篇
  2003年   1017篇
  2002年   988篇
  2001年   431篇
  2000年   340篇
  1999年   354篇
  1998年   231篇
  1997年   160篇
  1996年   156篇
  1995年   150篇
  1994年   130篇
  1993年   124篇
  1992年   253篇
  1991年   217篇
  1990年   206篇
  1989年   187篇
  1988年   197篇
  1987年   219篇
  1986年   213篇
  1985年   175篇
  1984年   133篇
  1983年   109篇
  1982年   76篇
  1981年   85篇
  1980年   67篇
  1979年   107篇
  1978年   94篇
  1977年   70篇
  1975年   67篇
  1974年   82篇
  1971年   65篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Major depressive disorder and other neuropsychiatric disorders are often managed with long-term use of antidepressant medication. Fluoxetine, an SSRI antidepressant, is widely used as a first-line treatment for neuropsychiatric disorders. However, fluoxetine has also been shown to increase the risk of metabolic diseases such as non-alcoholic fatty liver disease. Fluoxetine has been shown to increase hepatic lipid accumulation in vivo and in vitro. In addition, fluoxetine has been shown to alter the production of prostaglandins which have also been implicated in the development of non-alcoholic fatty liver disease. The goal of this study was to assess the effect of fluoxetine exposure on the prostaglandin biosynthetic pathway and lipid accumulation in a hepatic cell line (H4-II-E-C3 cells). Fluoxetine treatment increased mRNA expression of prostaglandin biosynthetic enzymes (Ptgs1, Ptgs2, and Ptgds), PPAR gamma (Pparg), and PPAR gamma downstream targets involved in fatty acid uptake (Cd36, Fatp2, and Fatp5) as well as production of 15-deoxy-Δ12,14PGJ2 a PPAR gamma ligand. The effects of fluoxetine to induce lipid accumulation were attenuated with a PTGS1 specific inhibitor (SC-560), whereas inhibition of PTGS2 had no effect. Moreover, SC-560 attenuated 15-deoxy-Δ12,14PGJ2 production and expression of PPAR gamma downstream target genes. Taken together these results suggest that fluoxetine-induced lipid abnormalities appear to be mediated via PTGS1 and its downstream product 15d-PGJ2 and suggest a novel therapeutic target to prevent some of the adverse effects of fluoxetine treatment.  相似文献   
2.
Hepatic NADPH-cytochrome P450 oxidoreductase null (HRN?) mice exhibit normal hepatic and extrahepatic biotransformation enzyme activities when compared to wild-type (WT) mice, but express no functional hepatic cytochrome P450 activities. When incubated in vitro with [14C]-diclofenac, liver microsomes from WT mice exhibited extensive biotransformation to oxidative and glucuronide metabolites and covalent binding to proteins was also observed. In contrast, whereas glucuronide conjugates and a quinone-imine metabolite were formed when [14C]-diclofenac was incubated with HRN? mouse liver, only small quantities of P450-derived oxidative metabolites were produced in these samples and covalent binding to proteins was not observed. Livers from vehicle-treated HRN? mice exhibited enhanced lipid accumulation, bile duct proliferation, hepatocellular degeneration and necrosis and inflammatory cell infiltration, which were not present in livers from WT mice. Elevated liver-derived alanine aminotransferase, glutamate dehydrogenase and alkaline phosphatase activities were also observed in plasma from HRN? mice. When treated orally with diclofenac for 7 days, at 30 mg/kg/day, the severities of the abnormal liver histopathology and plasma liver enzyme findings in HRN? mice were reduced markedly. Oral diclofenac administration did not alter the liver histopathology or elevate plasma enzyme activities of WT mice. These findings indicate that HRN? mice are valuable for exploration of the role played by hepatic P450s in drug biotransformation, but poorly suited to investigations of drug-induced liver toxicity. Nevertheless, studies in HRN? mice could provide novel insights into the role played by inflammation in liver injury and may aid the evaluation of new strategies for its treatment.  相似文献   
3.
4.
Non‐melanoma skin cancer frequently results from chronic exposure to ultraviolet (UV) irradiation. UV‐induced DNA damage activates cell cycle arrest checkpoints through degradation of the cyclin‐dependent kinase activators, the cell division cycle 25 (CDC25) phosphatases. We previously reported increased CDC25A in nonmelanoma skin cancer, but CDC25B and CDC25C had not been previously examined. Consequently, we hypothesized that increased expression of CDC25B and CDC25C increases tumor cell proliferation and skin tumor growth. We found that CDC25B and CDC25C were increased in mouse and human skin cancers. CDC25B was primarily cytoplasmic in skin and skin tumors and was significantly increased in the squamous cell carcinoma (SCC), while CDC25C was mostly nuclear in the skin, with an increased cytoplasmic signal in the premalignant and malignant tumors. Surprisingly, forced expression of CDC25B or CDC25C in cultured SCC cells did not affect proliferation, but instead suppressed apoptosis, while CDC25C silencing increased apoptosis without impacting proliferation. Targeting CDC25C to the nucleus via mutation of its nuclear export sequence, however, increased proliferation in SCC cells. Overexpression of CDC25C in the nuclear compartment did not hinder the ability of CDC25C to suppress apoptosis, neither did mutation of sites necessary for its interaction with 14‐3‐3 proteins. Analysis of apoptotic signaling pathways revealed that CDC25C increased activating phosphorylation of Akt on Ser473, increased inhibitory phosphorylation of proapoptotic BAD on Ser136, and increased the survival protein Survivin. Silencing of CDC25C significantly reduced Survivin levels. Taken together, these data suggest that increased expression of CDC25B or CDC25C are mechanisms by which skin cancers evade apoptotic cell death.  相似文献   
5.
6.
7.
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号