首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
基础医学   9篇
临床医学   1篇
内科学   6篇
特种医学   1篇
外科学   1篇
眼科学   1篇
药学   6篇
  2023年   1篇
  2021年   1篇
  2018年   1篇
  2016年   1篇
  2013年   4篇
  2012年   3篇
  2011年   4篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
排序方式: 共有25条查询结果,搜索用时 31 毫秒
1.
2.
3.

Background  

Our research goal is to develop a safe, reproducible surgical approach for implantation of a wide-field retinal stimulating array. The aim of this study was to evaluate the pathological response to acute implantation of a functional prototype electrode array in the suprachoroidal space.  相似文献   
4.
5.
Even though neurogenic axis is well known in asthma pathogenesis much attention had not been given on this aspect. Recent studies have reported the importance of TRP channels, calcium-permeable ion channels and key molecules in neurogenic axis, in asthma therapeutics. The role of TRPV1 channels has been underestimated in chronic respiratory diseases as TRPV1 knockout mice of C57BL/6 strains did not attenuate the features of these diseases. However, this could be due to strain differences in the distribution of airway capsaicin receptors. Here, we show that TRPV1 inhibition attenuates IL-13 induced asthma features by reducing airway epithelial injury in BALB/c mice. We found that IL-13 increased not only the lung TRPV1 levels but also TRPV1 expression in bronchial epithelia in BALB/c rather than in C57BL/6 mice. TRPV1 knockdown attenuated airway hyperresponsiveness, airway inflammation, goblet cell metaplasia and subepithelial fibrosis induced by IL-13 in BALB/c mice. Further, TRPV1 siRNA treatment reduced not only the cytosolic calpain and mitochondrial calpain 10 activities in the lung but also bronchial epithelial apoptosis indicating that TRPV1 siRNA might have corrected the intracellular and intramitochondrial calcium overload and its consequent apoptosis. Knockdown of IL-13 in allergen induced asthmatic mice reduced TRPV1, cytochrome c, and activities of calpain and caspase 3 in lung cytosol. Thus, these findings suggest that induction of TRPV1 with IL-13 in bronchial epithelia could lead to epithelial injury in in vivo condition. Since TRPV1 expression is correlated with human asthma severity, TRPV1 inhibition could be beneficial in attenuating airway epithelial injury and asthma features.  相似文献   
6.
Airway epithelial injury is the hallmark of various respiratory diseases and therapeutic targeting of epithelial injury could be an effective strategy for controlling these diseases. We recently reported that a novel cinnamate, ethyl 3′,4′,5′-trimethoxythionocinnamate (ETMTC) derived from Piper longum derivative, was most potent among various cinnamate derivatives in inhibiting inflammatory cell adhesion molecules (CAMs). In this study, we investigated the effects of ETMTC on the features of allergic asthma and epithelial injury in a murine model. ETMTC treatment to ovalbumin sensitized and challenged mice during ovalbumin challenge reduced airway hyperresponsiveness, and airway inflammation. This attenuation of asthma features was associated with the reduction in the expressions of various CAMs, NF-κB activation, Th2 cytokines, eotaxin and 8-isoprostane that were estimated in lung homogenates. Further, it increased activities of mitochondrial complexes I and IV in lung mitochondria and reduced cytochrome c and caspase 9 activities in lung cytosol. In addition, it reduced the levels of oxidative DNA damage marker in bronchoalveolar lavage fluid and DNA fragmentation of bronchial epithelia in lung sections. Further, ETMTC not only increased the levels of 15-(S)-hydroxyeicosatetraenoic acid, suppressor of airway remodeling, but also inhibited goblet cell metaplasia and sub-epithelial fibrosis. These results demonstrate that ETMTC reduces epithelial injury and mitochondrial dysfunction associated with allergic asthma and thus ETMTC could be useful to develop efficient therapeutic molecule against asthma.  相似文献   
7.
A shift from a T(H)1 to a T(H)2 immune response has been observed in vitro during dengue virus infection. Estimation of plasma IgE level (n = 28), CD4:CD8 lymphocyte ratio, and the intracellular interferon-gamma (IFN-gamma):interleukin-4 (IL-4) ratio (n = 9) was conducted in patients with various severities of dengue around the time of defervescence. The CD4:CD8 lymphocyte ratio was significantly lower (median = 0.45, interquartile range [IQR] = 0.4-0.47 versus 1.3, 1.0-1.9; P = 0.001), and IgE levels were significantly higher (mean = 300.4, SD = 252.5 versus 143.7, 117.9 IU/mL; P = 0.004) in patients than in healthy controls. The intracellular IFN-gamma:IL-4 ratio was significantly lower in patients compared with controls (0.28, 0.13 versus 0.99, 0.4; P = 0.001). These findings suggest that a T(H)2 immune response occurs in patients with dengue around the time of defervescence.  相似文献   
8.
9.
Abstract

Drug resistance is a serious concern in a clinical setting jeopardizing treatment for both infectious agents and cancers alike. The wide-spread emergence of multi-drug resistant (MDR) phenotypes from bacteria to cancerous cells necessitates the need to target resistance mechanisms and prevent the emergence of resistant mutants. Drug efflux seems to be one of the preferred approaches embraced by both microbial and mammalian cells alike, to thwart the action of chemotherapeutic agents thereby leading to a drug resistant phenotype. Relative to microbes, which predominantly employs proton motive force (PMF) powered, Major Facilitator Superfamily (MFS)/Resistance Nodulation and Division (RND) classes of efflux pumps to efflux drugs, cancerous cells preferentially use ATP fuelled ATP binding cassette (ABC) transporters to extrude chemotherapeutic agents. The prevalence, evolutionary characteristics and overlapping functions of ABC transporters have been highlighted in this review. Additionally, we outline the role of ABC pumps in conferring MDR phenotype to both bacteria and cancerous cells and underscore the importance of efflux pump inhibitors (EPI) to mitigate drug resistance. Based on the literature reports and analysis, we reason out feasibility of employing bacteria as a tool to screen for EPI’s targeting ABC pumps of cancerous cells.  相似文献   
10.

Background:

Pulsed electromagnetic field (PEMF) is used to treat bone and joint disorders for over 30 years. Recent studies demonstrate a significant effect of PEMF on bone and cartilage proliferation, differentiation, synthesis of extracellular matrix (ECM) and production of growth factors. The aim of this study is to assess if PEMF of low frequency, ultralow field strength and short time exposure have beneficial effects on in-vitro cultured human chondrocytes.

Materials and Methods:

Primary human chondrocytes cultures were established using articular cartilage obtained from knee joint during joint replacement surgery. Post characterization, the cells were exposed to PEMF at frequencies ranging from 0.1 to 10 Hz and field intensities ranging from 0.65 to 1.95 μT for 60 min/day for 3 consecutive days to analyze the viability, ECM component synthesis, proliferation and morphology related changes post exposure. Association between exposure doses and cellular effects were analyzed with paired''t’ test.

Results:

In-vitro PEMF exposure of 0.1 Hz frequency, 1.95 μT and duration of 60 min/day for 3 consecutive days produced the most favorable response on chondrocytes viability (P < 0.001), ECM component production (P < 0.001) and multiplication. Exposure of identical chondrocyte cultures to PEMFs of 0.65 μT field intensity at 1 Hz frequency resulted in less significant response. Exposure to 1.3 μT PEMFs at 10 Hz frequency does not show any significant effects in different analytical parameters.

Conclusions:

Short duration PEMF exposure may represent a new therapy for patients with Osteoarthritis (OA).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号