首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   290篇
  免费   17篇
耳鼻咽喉   2篇
儿科学   1篇
基础医学   50篇
口腔科学   5篇
临床医学   22篇
内科学   63篇
皮肤病学   3篇
神经病学   83篇
特种医学   8篇
外科学   45篇
综合类   2篇
预防医学   6篇
药学   13篇
肿瘤学   4篇
  2022年   3篇
  2021年   11篇
  2020年   7篇
  2019年   8篇
  2018年   4篇
  2017年   2篇
  2016年   6篇
  2015年   5篇
  2014年   12篇
  2013年   11篇
  2012年   9篇
  2011年   6篇
  2010年   8篇
  2009年   6篇
  2008年   9篇
  2007年   17篇
  2006年   12篇
  2005年   20篇
  2004年   20篇
  2003年   15篇
  2002年   11篇
  2001年   11篇
  2000年   6篇
  1999年   13篇
  1998年   4篇
  1997年   6篇
  1996年   6篇
  1995年   3篇
  1994年   2篇
  1992年   5篇
  1991年   2篇
  1990年   3篇
  1989年   6篇
  1988年   7篇
  1987年   6篇
  1986年   4篇
  1985年   5篇
  1984年   2篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1975年   1篇
  1974年   2篇
  1973年   2篇
  1923年   1篇
排序方式: 共有307条查询结果,搜索用时 15 毫秒
1.
Distribution of putative glutamatergic neurons in the lower brainstem and cerebellum of the rat was examined immunocytochemically by using a monoclonal antibody against phosphate-activated glutaminase, which has been proposed to be a major synthetic enzyme of transmitter glutamate and so may serve as a marker for glutamatergic neurons in the central nervous system. Intensely-immunolabeled neuronal cell bodies were densely distributed in the main precerebellar nuclei sending mossy fibers to the cerebellum; in the pontine nuclei, pontine tegmental reticular nucleus of Bechterew, external cuneate nucleus, and lateral reticular nucleus of the medulla oblongata. Phosphate-activated glutaminase-immunoreactive granular deposits were densely seen in the brachium pontis and restiform body, suggesting the immunolabeling of mossy fibers of passage. In the cerebellum, neuropil within the granule cell layer of the cerebellar cortex displayed intense phosphate-activated glutaminase-immunoreactivity, and that within the deep cerebellar nuclei showed moderate immunoreactivity. These results indicate that many mossy fiber terminals originate from phosphate-activated glutaminase-containing neurons and utilize phosphate-activated glutaminase for the synthesis of transmitter glutamate. Intensely-immunostained neuronal cell bodies were further observed in other regions which have been reported to contain neurons sending mossy fibers to the cerebellum; in the dorsal part of the principal sensory trigeminal nucleus, dorsomedial part of the oral subnucleus of the spinal trigeminal nucleus, interpolar subnucleus of the spinal trigeminal nucleus, paratrigeminal nucleus, supragenual nucleus, regions dorsal to the abducens nucleus and genu of the facial nerve, superior and medial vestibular nuclei, cell groups f, x and y, hypoglossal prepositus nucleus, intercalated nucleus, nucleus of Roller, reticular regions intercalated between the motor trigeminal and principal sensory trigeminal nuclei, linear nucleus, and gigantocellular and paramedian reticular formation. Neuronal cell bodies with intense phosphate-activated glutaminase-immunoreactivity were also found in other brainstem regions, such as the paracochlear glial substance, posterior ventral cochlear nucleus, and cell group e. Although it is still controversial whether all glutamatergic neurons use phosphate-activated glutaminase in a transmitter-related process and whether phosphate-activated glutaminase is involved in other metabolism-related processes, the neurons showing intense phosphate-activated glutaminase-immunoreactivity in the present study were suggested to be putative glutamatergic neurons.  相似文献   
2.
Unipolar brush cells (UBCs) are a class of small neurons that are densely concentrated in the granular layers of the vestibulocerebellar cortex and dorsal cochlear nucleus. The UBCs form giant synapses with individual mossy fibre rosettes on the dendrioles which make up their brush formations and are provided with numerous, unusual non-synaptic appendages. In accord with the glutamatergic nature of mossy fibres, our previous post-embedding immunocytochemical studies indicated that various ionotropic glutamate receptor subunits are localized at the post-synaptic densities of the giant synapses, whereas the non-synaptic appendages are immunonegative. On the contrary, the metabotropic glutamate receptors mGluR1 and mGluR2/3 are situated at the non-synaptic appendages and are lacking at the post-synaptic densities. Other authors, however, have shown that antibodies to these metabotropic receptors stain both appendages and post-synaptic densities. In the present study, we have re-evaluated the distribution of metabotropic glutamate receptors in the UBCs of the cerebellum and the cochlear nuclear complex by light and electron microscopic pre-embedding immunocytochemistry with subtype-specific antibodies. We confirm that UBCs dendritic brushes are densely immunostained by antibody to mGluR1 particularly in the cerebellum and that antibody to mGluR2/3 labels at least a percentage of the UBC brushes in both the cerebellum and cochlear nuclei. At the ultrastructural level, it appears that mGluR1 and mGluR2/3 immunoreactivities are not associated with the post-synaptic densities of the giant mossy fibre–UBC synapses, but instead are concentrated on the non-synaptic appendages of the cerebellar UBCs. The non-synaptic appendages, therefore, may be an important avenue for regulating the excitability of UBCs and mediating glutamate effects on their still unknown intracellular signal transduction cascades. We also show that the pre-synaptic densities of UBC dendrodendritic junctions are mGluR2/3 positive. As previously demonstrated, antibodies to mGluR1 and mGluR2/3 label subsets of Golgi cells. Antibody to mGluR5 does not stain UBCs in the cerebellum and cochlear nucleus and reveals the somatodendritic compartment of Golgi cells situated in the core of the cerebellar granular layer, whilst cochlear nucleus Golgi cells are mGluR5 negative.  相似文献   
3.
ObjectiveA high coronary artery calcification score (CACS) may be associated with high mortality in patients undergoing hemodialysis (HD). Recently, effects of iron on vascular smooth muscle cell calcification have been described. We aimed to investigate the relationships between iron, CACS, and mortality in HD patients.MethodsWe studied 173 consecutive patients who were undergoing maintenance HD. Laboratory data and Agatston’s CACS were obtained at baseline for two groups of patients: those with CACS ≥400 (n = 109) and those with CACS <400 (n = 64). Logistic regression analyses for CACS ≥400 and Cox proportional hazard analyses for mortality were conducted.ResultsThe median (interquartile range) age and duration of dialysis of the participants were 67 (60–75) years and 73 (37–138) months, respectively. Serum iron (Fe) and transferrin saturation (TSAT) levels were significantly lower in participants with CACS ≥400 than in those with CACS <400, although the serum ferritin concentration did not differ between the groups. TSAT ≥21% was significantly associated with CACS ≥400 (odds ratio 0.46, p<0.05). TSAT ≥17%, Fe ≥63 µg/dL, and ferritin ≥200 ng/mL appear to protect against 5-year all-cause mortality in HD patients, independent of conventional risk factors of all-cause mortality (p < 0.05).ConclusionWe have identified associations between iron, CACS, and mortality in HD patients. Lower TSAT was found to be an independent predictor of CACS ≥400, and iron deficiency (low TSAT, iron, or ferritin) was a significant predictor of 5-year all-cause mortality in HD patients.  相似文献   
4.
Annals of Nuclear Medicine - Amyloid positron emission tomography (PET) can reliably detect senile plaques and fluorinated ligands are approved for clinical use. However, the clinical impact of...  相似文献   
5.
Annals of Nuclear Medicine - Although previous studies have investigated age and gender effects on striatal subregional dopamine transporter (DaT) binding, these studies were mostly based on a...  相似文献   
6.
We examined the synaptic structure, quantity, and distribution of α‐amino‐3‐hydroxy‐5‐methylisoxazole‐4‐propionic acid (AMPA)‐ and N‐methyl‐D‐aspartate (NMDA)‐type glutamate receptors (AMPARs and NMDARs, respectively) in rat cochlear nuclei by a highly sensitive freeze‐fracture replica labeling technique. Four excitatory synapses formed by two distinct inputs, auditory nerve (AN) and parallel fibers (PF), on different cell types were analyzed. These excitatory synapse types included AN synapses on bushy cells (AN‐BC synapses) and fusiform cells (AN‐FC synapses) and PF synapses on FC (PF‐FC synapses) and cartwheel cell spines (PF‐CwC synapses). Immunogold labeling revealed differences in synaptic structure as well as AMPAR and NMDAR number and/or density in both AN and PF synapses, indicating a target‐dependent organization. The immunogold receptor labeling also identified differences in the synaptic organization of FCs based on AN or PF connections, indicating an input‐dependent organization in FCs. Among the four excitatory synapse types, the AN‐BC synapses were the smallest and had the most densely packed intramembrane particles (IMPs), whereas the PF‐CwC synapses were the largest and had sparsely packed IMPs. All four synapse types showed positive correlations between the IMP‐cluster area and the AMPAR number, indicating a common intrasynapse‐type relationship for glutamatergic synapses. Immunogold particles for AMPARs were distributed over the entire area of individual AN synapses; PF synapses often showed synaptic areas devoid of labeling. The gold‐labeling for NMDARs occurred in a mosaic fashion, with less positive correlations between the IMP‐cluster area and the NMDAR number. Our observations reveal target‐ and input‐dependent features in the structure, number, and organization of AMPARs and NMDARs in AN and PF synapses. J. Comp. Neurol. 522:4023–4042, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   
7.
The Kv2.1 voltage‐gated K+ channel is widely expressed throughout mammalian brain, where it contributes to dynamic activity‐dependent regulation of intrinsic neuronal excitability. Here we show that somatic plasma membrane Kv2.1 clusters are juxtaposed to clusters of intracellular ryanodine receptor (RyR) Ca2+‐release channels in mouse brain neurons, most prominently in medium spiny neurons (MSNs) of the striatum. Electron microscopy–immunogold labeling shows that in MSNs, plasma membrane Kv2.1 clusters are adjacent to subsurface cisternae, placing Kv2.1 in close proximity to sites of RyR‐mediated Ca2+ release. Immunofluorescence labeling in transgenic mice expressing green fluorescent protein in specific MSN populations reveals the most prominent juxtaposed Kv2.1:RyR clusters in indirect pathway MSNs. Kv2.1 in both direct and indirect pathway MSNs exhibits markedly lower levels of labeling with phosphospecific antibodies directed against the S453, S563, and S603 phosphorylation site compared with levels observed in neocortical neurons, although labeling for Kv2.1 phosphorylation at S563 was significantly lower in indirect pathway MSNs compared with those in the direct pathway. Finally, acute stimulation of RyRs in heterologous cells causes a rapid hyperpolarizing shift in the voltage dependence of activation of Kv2.1, typical of Ca2+/calcineurin‐dependent Kv2.1 dephosphorylation. Together, these studies reveal that striatal MSNs are distinct in their expression of clustered Kv2.1 at plasma membrane sites juxtaposed to intracellular RyRs, as well as in Kv2.1 phosphorylation state. Differences in Kv2.1 expression and phosphorylation between MSNs in direct and indirect pathways provide a cell‐ and circuit‐specific mechanism for coupling intracellular Ca2+ release to phosphorylation‐dependent regulation of Kv2.1 to dynamically impact intrinsic excitability. J. Comp. Neurol. 522:3555–3574, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   
8.
Dynamic activity of glia has repeatedly been demonstrated, but if such activity is independent from neuronal activity, glia would not have any role in the information processing in the brain or in the generation of animal behavior. Evidence for neurons communicating with glia is solid, but the signaling pathway leading back from glial-to-neuronal activity was often difficult to study. Here, we introduced a transgenic mouse line in which channelrhodopsin-2, a light-gated cation channel, was expressed in astrocytes. Selective photostimulation of these astrocytes in vivo triggered neuronal activation. Using slice preparations, we show that glial photostimulation leads to release of glutamate, which was sufficient to activate AMPA receptors on Purkinje cells and to induce long-term depression of parallel fiber-to-Purkinje cell synapses through activation of metabotropic glutamate receptors. In contrast to neuronal synaptic vesicular release, glial activation likely causes preferential activation of extrasynaptic receptors that appose glial membrane. Finally, we show that neuronal activation by glial stimulation can lead to perturbation of cerebellar modulated motor behavior. These findings demonstrate that glia can modulate the tone of neuronal activity and behavior. This animal model is expected to be a potentially powerful approach to study the role of glia in brain function.  相似文献   
9.
10.
Summary Phosphoinositide 3-kinase (PI3-kinase) plays a crucial role in insulin signal transduction. We studied the molecular mechanism of the insulin-induced activation of PI3-kinase in rat hepatoma Fao cells using an antibody against the 110-kDa catalytic subunit (p110) and two against the 85-kDa regulatory subunit (p85). PI3-kinase activity increased 1.6-fold in anti-p85 immunoprecipitates after insulin stimulation, whereas it did not increase when cell lysates were first immunoprecipitated with anti-phosphotyrosine or anti-insulin receptor substrate-1 (IRS-1), then with anti-p85, suggesting that the PI3-kinase which associates with tyrosyl phosphoproteins including IRS-1 is responsible for the increase in kinase activity. The activated PI3-kinase molecules constituted 4–6% of the total PI3-kinase, and their specific activity was 11–14 times higher than that of the basal state. Anti-p110 recognized the catalytically active form of p110, and immunoprecipitated p110 only after exposure to insulin. Hence, the epitope of anti-p110, P200-C215, seems to be included in the portion of p110, the conformation of which is changed by insulin stimulation. We conclude that, in response to insulin stimulation, only a small fraction of p85 in the PI3-kinase pool associates with tyrosyl phosphoproteins including IRS-1, and that the specific activity of p110 is increased presumably through a conformational change including the P200-C215 region.Abbreviations PI3-kinase Phosphoinositide 3-kinase - p85 85-kDa subunit of PI3-kinase - p110 110-kDa subunit of PI3-kinase - IRS-1 insulin receptor substrate-1 - SH2 src homology 2 - SH3 src homology 3 - BCR breakpoint cluster region - PMSF phenylmethylsulphonyl fluoride - HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulphonic acid - PIP phosphatidylinositol phosphate - TLC thin layer chromatography - IP (in figures) immunoprecipitation with the indicated antibody - TBS Tris-buffered saline  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号