首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
儿科学   5篇
妇产科学   1篇
基础医学   2篇
神经病学   4篇
外科学   1篇
  2022年   1篇
  2010年   1篇
  2008年   4篇
  2007年   1篇
  2006年   3篇
  2003年   2篇
  2002年   1篇
排序方式: 共有13条查询结果,搜索用时 31 毫秒
1.
Serum progesterone sulfates were evaluated in the etiology of gestational diabetes mellitus (GDM). Serum progesterone sulfates were measured using ultra-performance liquid chromatography–tandem mass spectrometry in four patient cohorts: 1) the Hyperglycemia and Adverse Pregnancy Outcomes study; 2) London-based women of mixed ancestry and 3) U.K.-based women of European ancestry with or without GDM; and 4) 11–13 weeks pregnant women with BMI ≤25 or BMI ≥35 kg/m2 with subsequent uncomplicated pregnancies or GDM. Glucose-stimulated insulin secretion (GSIS) was evaluated in response to progesterone sulfates in mouse islets and human islets. Calcium fluorescence was measured in HEK293 cells expressing transient receptor potential cation channel subfamily M member 3 (TRPM3). Computer modeling using Molecular Operating Environment generated three-dimensional structures of TRPM3. Epiallopregnanolone sulfate (PM5S) concentrations were reduced in GDM (P < 0.05), in women with higher fasting plasma glucose (P < 0.010), and in early pregnancy samples from women who subsequently developed GDM with BMI ≥35 kg/m2 (P < 0.05). In islets, 50 µmol/L PM5S increased GSIS by at least twofold (P < 0.001); isosakuranetin (TRPM3 inhibitor) abolished this effect. PM5S increased calcium influx in TRPM3-expressing HEK293 cells. Computer modeling and docking showed identical positioning of PM5S to the natural ligand in TRPM3. PM5S increases GSIS and is reduced in GDM serum. The activation of GSIS by PM5S is mediated by TRPM3 in both mouse and human islets.  相似文献   
2.
Pregnane steroids have sedative and neuroprotective effects on the brain, due to interactions with the steroid-binding site of the GABAA receptor. In the adult brain, synthesis of the pregnane steroids is increased in response to stress. Therefore, we have used umbilicoplacental embolization to mimic chronic placental insufficiency during late gestation in sheep, to investigate the expression of the steroidogenic enzymes p450scc, 5alpha-reductase type I (5alphaRI), 5alpha-reductase type II (5alphaRII), and allopregnanolone (AP) content in the fetal brain. Umbilicoplacental embolization was induced from 114 d gestation (term approximately 147 d) by daily injection of inert microspheres into the umbilical artery and continued for 17-23 d. Fetal arterial oxygen saturation was reduced to approximately 60% of the preembolization value in each fetus, with a significant reduction in blood arterial Po2, pH, and plasma glucose concentrations (p < 0.05) and a significant increase in blood arterial Pco2 and plasma lactate concentrations (p < 0.05). At postmortem at 131-137 d gestation, embolized fetuses were growth-restricted (2.10 +/- 0.14 kg, n = 5) compared with age-matched controls (4.43 +/- 0.56 kg, n = 7, p < 0.05). Umbilicoplacental embolized fetuses showed increased P450scc expression in the primary motor cortex; 5alphaRI expression was not changed in any of the regions examined, whereas 5alphaRII expression was markedly increased in all brain regions. Brain AP content did not significantly change, whereas plasma concentrations were increased. These findings suggest that the increased expression of p450scc and 5alphaRII may be a response that maintains AP concentration in the fetal brain after compromised placental function and/or intrauterine stress.  相似文献   
3.
Neuroimaging studies indicate reduced volumes of certain gray matter regions in survivors of prematurity with periventricular leukomalacia (PVL). We hypothesized that subacute and/or chronic gray matter lesions are increased in incidence and severity in PVL cases compared to non-PVL cases at autopsy. Forty-one cases of premature infants were divided based on cerebral white matter histology: PVL (n = 17) with cerebral white matter gliosis and focal periventricular necrosis; diffuse white matter gliosis (DWMG) (n = 17) without necrosis; and “ Negative” group (n = 7) with no abnormalities. Neuronal loss was found almost exclusively in PVL, with significantly increased incidence and severity in the thalamus (38%), globus pallidus (33%), and cerebellar dentate nucleus (29%) compared to DWMG cases. The incidence of gliosis was significantly increased in PVL compared to DWMG cases in the deep gray nuclei (thalamus/basal ganglia; 50–60% of PVL cases), and basis pontis (100% of PVL cases). Thalamic and basal ganglionic lesions occur almost exclusively in infants with PVL. Gray matter lesions occur in a third or more of PVL cases suggesting that white matter injury generally does not occur in isolation, and that the term “perinatal panencephalopathy” may better describe the scope of the neuropathology. Statement of financial support: CRP is supported by KO8 NS049090 from NINDS. This study was supported by grants from NINDS (PO1-NS38475) and NICHD (Children’s Hospital Mental Retardation Research Center) (P30-HD18655).  相似文献   
4.
Infection has been identified as a risk factor for sudden infant death syndrome (SIDS). Synthesis of allopregnanolone, a neuroactive steroid with potent sedative properties, is increased in response to stress. In this study, we investigated the effect of endotoxin (lipopolysaccharide, LPS) on brain and plasma allopregnanolone concentrations and behavior in newborn lambs. LPS was given intravenously (0.7 micro g/kg) at 12 and 15 d of age (n = 7), and resulted in a biphasic febrile response (p < 0.001), hypoglycemia, lactic acidemia (p < 0.05), a reduction in the incidence of wakefulness, and increased nonrapid eye movement sleep and drowsiness (p < 0.05) compared with saline-treated lambs (n = 5). Plasma allopregnanolone and cortisol were significantly (p < 0.05) increased after LPS treatment. These responses to LPS lasted 6-8 h, and were similar at 12 and 15 d of age. Each lamb was then given LPS at 20 d of age and killed 3 h posttreatment to obtain samples of the brain. Allopregnanolone concentrations were increased (p < 0.05) in all brain areas except the cerebellum and diencephalon. We suggest that LPS-induced increase of allopregnanolone in the brain may contribute to somnolence in the newborn, and may be responsible for the reduced arousal thought to contribute to the risk of SIDS in human infants.  相似文献   
5.
Periventricular leukomalacia (PVL), the major substrate of neurologic deficits in premature infants, is associated with reduced white matter volume. Using immunomarkers of axonal pathology [beta-amyloid precursor protein (beta-APP) and apoptotic marker fractin], we tested the hypothesis that widespread (diffuse) axonal injury occurs in the gliotic white matter beyond the foci of necrosis in PVL, thus contributing to the white matter volume reduction. In a cohort of 17 control cases and 13 PVL cases with lesions of different chronological ages, diffuse axonal damage in PVL was detected by fractin in white matter sites surrounding and distant from acute and organizing foci of necrosis. Using beta-APP, axonal spheroids were detected within necrotic foci in the acute and organizing (subacute) stages, a finding consistent with others. Interestingly, GAP-43 expression was also detected in spheroids in the necrotic foci, suggesting attempts at axonal regeneration. Thirty-one percent of the PVL cases had thalamic damage and 15% neuronal injury in the cerebral cortex overlying PVL. We conclude that diffuse axonal injury, as determined by apoptotic marker fractin, occurs in PVL and that its cause likely includes primary ischemia and trophic degeneration secondary to corticothalamic neuronal damage.  相似文献   
6.
This article addresses the issue of whether the late preterm infant is more susceptible to gray matter injury induced by hypoxia-ischemia than the term infant. Although different gray matter regions display varying patterns of neuronal injury in the face of hypoxia-ischemia during advancing gestational development, little is known about the specific patterns of injury faced by the late preterm infant. This changing pattern of neuronal vulnerability with age likely reflects developmental changes of susceptibility and protective factors essential for responding to energy deprivation at the molecular, cellular, biochemical, and vascular levels. Future research involving closer examination of the late preterm period is essential to provide a greater understanding of the neuronal vulnerability in the face of hypoxic-ischemic injury.  相似文献   
7.
The cellular basis of myelin deficits detected by neuroimaging in long-term survivors of periventricular leukomalacia (PVL) is poorly understood. We tested the hypothesis that oligodendrocyte lineage (OL) cell density is reduced in PVL, thereby contributing to subsequent myelin deficits. Using computer-based methods, we determined OL cell density in sections from 18 PVL and 18 age-adjusted control cases, immunostained with the OL-lineage marker Olig2. Myelination was assessed with myelin basic protein (MBP) immunostaining. We found no significant difference between PVL and control cases in Olig2 cell density in the periventricular or intragyral white matter. We did find, however, a significant increase in Olig2 cell density at the necrotic foci, compared with distant areas. Although no significant difference was found in the degree of MBP immunostaining, we observed qualitative abnormalities of MBP immunostaining in both the diffuse and necrotic components of PVL. Abnormal MBP immunostaining in PVL despite preserved Olig2 cell density may be secondary to arrested OL maturation, damage to OL processes, and/or impaired axonal-OL signaling. OL migration toward the "core" of injury may occur to replenish OL cell number. This study provides new insight into the cellular basis of the myelin deficits observed in survivors of PVL.  相似文献   
8.
The major neuropathological correlate of cerebral palsy in premature infants is periventricular leukomalacia (PVL), a disorder of the immature cerebral white matter. Cerebral ischemia leading to excitotoxicity is thought to be important in the pathogenesis of this disorder, implying a critical role for glutamate transporters, the major determinants of extracellular glutamate concentration. Previously, we found that EAAT2 expression is limited primarily to premyelinating oligodendrocytes early in development and is rarely observed in astrocytes until >40 weeks. In this study, we analyzed the expression of EAAT2 in cerebral white matter from PVL and control cases. Western blot analysis suggested an up-regulation of EAAT2 in PVL compared with control cases. Single- and double-label immunocytochemistry showed a significantly higher percentage of EAAT2-immunopositive astrocytes in PVL (51.8% +/- 5.6%) compared with control white matter (21.4% +/- 5.6%; P = 0.004). Macrophages in the necrotic foci in PVL also expressed EAAT2. Premyelinating oligodendrocytes in both PVL and control cases expressed EAAT2, without qualitative difference in expression. The previously unrecognized up-regulation of EAAT2 in reactive astrocytes and its presence in macrophages in PVL reported here may reflect a response to either hypoxic-ischemic injury or inflammation.  相似文献   
9.
The hypothesis that unexplained stillbirth arises in a similar manner as the sudden infant death syndrome (SIDS) is based in part on shared neuropathologic features between the two entities, including hypoxic-ischemic lesions such as white matter and brainstem gliosis, as well as aplasia or hypoplasia of the arcuate nucleus on the ventral surface of the medulla. The arcuate nucleus is the putative homologue of the respiratory chemosensory region at the ventral medullary surface in animals that is involved in central chemosensitivity. To determine arcuate nucleus pathology in stillbirth, and its co-occurrence with evidence of hypoxia-ischemia, we reviewed brain specimens from the archives of our hospitals from 22 consecutive stillbirths from 22 to 41 gestational weeks. Explained causes of death (n=17) included nuchal cord, acute chorioamnionitis, placental abruption, and fetal glomerulosclerosis; 5 cases were unexplained. In 12 brains, we observed nuclear karyorrhexis and/or pyknosis with cytoplasmic hypereosinophilia in neurons in the arcuate nucleus in both explained (n=8) and unexplained (n=4) cases (54.5% of total cases). Three additional cases had arcuate aplasia (n=1) or hypoplasia (n=2) (13.6% of total cases); one of the latter cases also had neuronal necrosis in the hypoplastic arcuate. The degree of gliosis in the region of the arcuate nucleus was variable across all cases, without statistically significant differences between groups with and without arcuate nucleus necrosis. Other lesions in association with (n=14) and without (n=8) arcuate nucleus abnormalities were diffuse cerebral white matter gliosis, periventricular leukomalacia (PVL), and neuronal necrosis in the hippocampus, basal ganglia, thalamus, basis pontis, and brainstem tegmentum. In 16/20 (80.0%) cases (with or without histologic necrosis of the arcuate), immunostaining with caspase-3 demonstrated positive neurons. Our findings suggest that neuronal pathology in the arcuate nucleus may be both developmental (13.6%) and acquired (54.5%). The association of neuronal necrosis and apoptosis in the arcuate nucleus with systemic entities involving fetal ischemia, and with other brain lesions consistent with ischemia, e.g., cerebral white matter gliosis, suggests that ischemia plays a role in the arcuate nucleus damage as well. Thus, the underpopulation of arcuate neurons detected postnatally in some SIDS infants may be secondary to an acquired insult in mid- or late gestation, and in other cases, a primary developmental lesion in early gestation, or both. The role of arcuate nucleus pathology in the pathogenesis of fetal demise remains to be determined.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号