首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   137篇
  免费   7篇
儿科学   17篇
基础医学   11篇
口腔科学   3篇
临床医学   5篇
内科学   26篇
神经病学   57篇
特种医学   6篇
外科学   8篇
综合类   1篇
一般理论   1篇
药学   9篇
  2023年   3篇
  2021年   1篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2015年   1篇
  2013年   1篇
  2012年   4篇
  2011年   12篇
  2010年   10篇
  2009年   5篇
  2008年   18篇
  2007年   14篇
  2006年   6篇
  2005年   6篇
  2004年   8篇
  2003年   4篇
  2002年   3篇
  2001年   3篇
  2000年   3篇
  1998年   4篇
  1997年   8篇
  1996年   4篇
  1995年   2篇
  1994年   1篇
  1992年   2篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1984年   1篇
  1982年   2篇
  1980年   3篇
  1976年   1篇
  1975年   1篇
  1962年   1篇
排序方式: 共有144条查询结果,搜索用时 15 毫秒
1.
Severe liver disease is an unusual but potentially fatal complication of sickle-cell disease (SCD). Liver transplantation has been complicated by ongoing SCD and thrombosis. We reviewed 214 pediatric transplants done at our institution from 1990 to 2005. Three patients were transplanted for complications of SCD, including intrahepatic cholestasis and viral hepatitis. Overall patient and graft survival was 66%. One patient died after 6 years from a subdural hematoma. There were not any incidences of graft loss, primary nonfunction, or thrombosis. All 3 patients required between 1 and 4 postoperative transfusions to keep hemoglobin (Hgb) >9 g/dL with an S fraction of less than 25%. One patient required a preoperative transfusion for a hemoglobin S (HbS) fraction of 30%. Mean follow-up has been 4.2 years (range, 2.6-5.4 years). All 3 children continued to suffer sequelae from their SCD. One child suffered from recurrent sickle-cell hepatopathy and chronic graft failure. In conclusion, children with SCD can in rare instances develop acute and chronic liver failure. These children can be successfully transplanted with good outcomes. Careful attention must be paid to HbS fraction and hemoglobin level to prevent sickling and vascular thrombosis. Unfortunately, liver transplant cannot alter the natural course of the disease.  相似文献   
2.
3.
Weight loss and changes in growth are noted in children treated with interferon alpha (IFN-α). The aim of this study was to prospectively determine changes in weight, height, body mass index (BMI), and body composition during and after treatment of children with hepatitis C virus (HCV). Children treated with pegylated interferon alpha-2a (Peg-IFN-α2a) ± ribavirin in the Pediatric Study of Hepatitis C (PEDS-C) trial underwent anthropometric measurements, dual-energy X-ray absorptiometry scan, as well as dietary and activity assessments during and after treatment. One hundred and fourteen (55% male) children, with a mean age of 11 ± 3 years, were randomized, and 107 received treatment for at least 24 weeks. Subjects were divided into three groups according to duration of treatment: 24 (N = 14), 48 (N = 82), or 72 (N = 11) weeks. Decrements of up to 0.50 z score were observed for weight, height, and BMI while on therapy among all groups (P ≤ 0.01, compared to baseline). In the group treated for 48 weeks, 29 (33%) subjects had greater than 0.5-unit decrement in height-for-age z (HAZ) score. Though weight-for-age and BMI z scores returned to baseline after cessation of therapy, mean HAZ score was slower to rebound, still lower than baseline at 96 weeks post-therapy for the long-treatment duration group (P = 0.03) and lower than baseline in most children treated for 48 weeks. Percent body fat, fat-free mass z scores, and triceps skinfold z scores decreased with therapy. Dietary energy intake and levels of physical activity did not change during treatment. CONCLUSIONS: Peg-IFN-α2a was associated with significant changes in body weight, linear growth, BMI, and body composition in children. These effects were generally reversible with cessation of therapy, although HAZ scores had not returned to baseline after 2 years of observation in many. Longer term growth data are needed among children treated for chronic HCV.  相似文献   
4.
Neonatal hypoxia–ischemia (HI) is a common occurrence in preterm and low‐birth‐weight infants, and the incidence of low‐birth‐weight and preterm births is increasing. Characterization of brain injury after HI is of critical importance in developing new treatments that more accurately target the injury. After severe HI, neuronal cells undergo necrosis and secondary apoptosis of the surrounding cells as a result of neuroinflammation. We sought to characterize the biochemical pathways associated with cell death after HI. Bax, a cell death signaling protein, is activated after HI and translocates to the nucleus, endoplasmic reticulum, and mitochondria. The translocation patterns of Bax affect the resultant cell death phenotype (necrotic or apoptotic) observed. Although Bax is known to oligomerize once it is activated, less is known about the factors that control its translocation and oligomerization. We hypothesize that Bax kinase‐specific phosphorylation determines its oligomerization and intracellular localization. Using well‐established in vivo and in vitro models of neonatal HI, we characterized Bax oligomerization and multiorganelle translocation. We found that HI‐dependent phosphorylation of Bax determines its oligomerization status and multiorganelle localization, and, ultimately, the cell death phenotype observed. Understanding the mechanisms of Bax translocation will aid in the rational design of therapeutic strategies that decrease the trauma resulting from HI‐associated inflammation. © 2013 Wiley Periodicals, Inc.  相似文献   
5.
Previously, we reported that the mouse intestine selected mutants of Escherichia coli MG1655 that have improved colonizing ability (M. P. Leatham et al., Infect. Immun. 73:8039-8049, 2005). These mutants grew 10 to 20% faster than their parent in mouse cecal mucus in vitro and 15 to 30% faster on several sugars found in the mouse intestine. The mutants were nonmotile and had deletions of various lengths beginning immediately downstream of an IS1 element located within the regulatory region of the flhDC operon, which encodes the master regulator of flagellum biosynthesis, FlhD(4)C(2). Here we show that during intestinal colonization by wild-type E. coli strain MG1655, 45 to 50% of the cells became nonmotile by day 3 after feeding of the strain to mice and between 80 and 90% of the cells were nonmotile by day 15 after feeding. Ten nonmotile mutants isolated from mice were sequenced, and all were found to have flhDC deletions of various lengths. Despite this strong selection, 10 to 20% of the E. coli MG1655 cells remained motile over a 15-day period, suggesting that there is an as-yet-undefined intestinal niche in which motility is an advantage. The deletions appear to be selected in the intestine for two reasons. First, genes unrelated to motility that are normally either directly or indirectly repressed by FlhD(4)C(2) but can contribute to maximum colonizing ability are released from repression. Second, energy normally used to synthesize flagella and turn the flagellar motor is redirected to growth.  相似文献   
6.
7.
8.
The fetal and newborn brain is particularly susceptible to hypoxia, which increases the risk for neurodevelopmental deficits, seizures, epilepsy and life-span motor, behavioral and cognitive disabilities. Here, we report that prenatal hypoxia at gestation day 17 in mice caused an immediate decrease in fetal cerebral cortex levels of glutamate decarboxylase, a key proteins in the GABA pathway. While maternal MgSO4 treatment prior to hypoxia did not have an early effect, it did accelerate maturation at a later stage based on the observed protein expression profile. In addition, MgSO4 reversed the hypoxia-induced loss of a subpopulation of inhibitory neurons that express calbindin in cortex at postnatal day 14. In the hippocampus, responses to prenatal hypoxia were also evident 4 days after the hypoxia. However, in contrast to the observations in cerebral cortex, hypoxia stimulated key protein expression in the hippocampus. The hippocampal response to hypoxia was also reversed by maternal MgSO4 treatment. The data presented here suggests that decreased levels of key proteins in the GABA pathway in the cerebral cortex may lead to high susceptibility to seizures and epilepsy in newborns after prenatal or perinatal hypoxia and that maternal MgSO4 treatment can reverse the hypoxia-induced deficits in the GABA pathway.  相似文献   
9.
The feasibility of using Gd dendrimer‐based macromolecules (Gd‐G8 dendrimer) as a dual CT and MR contrast agent for monitoring convection‐enhanced delivery of therapy in the brain is evaluated both in vitro and in vivo with optimal dosing established. In vitro CT attenuation values of the Gd‐based agents (~6.0 HU mM ?1) were ~1.6 times greater than iodine‐based agents and the attenuation of the Gd‐DTPA was comparable to Gd‐G8 dendrimer. Visible enhancement was observed on both CT and MR using Gd‐G8 dendrimer over a range of 23–78 mM ; however, a concentration of at least 47 mM in Gd was required for adequate delineation of the injection site on both CT and MR. MR offers greater sensitivity than CT in estimating the volume of distribution (Vd) and effectively quantified the agent's concentration and diffusion using T1 mapping at much lower concentrations of Gd (<10 mM in [Gd]). Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
10.
Perinatal hypoxia-ischemia (HI) occurs in 0.2%-0.4% of all live births, with 100% O(2) resuscitation (HHI) remaining a standard clinical treatment. HI produces a broad spectrum of neuronal death phenotypes ranging from a more noninflammatory apoptotic death to a more inflammatory necrotic cell death that may be responsible for the broad spectrum of reported dysfunctional outcomes. However, the mechanisms that would account for this phenotypic spectrum of cell death are not fully understood. Here, we provide evidence that Bcl-2-associated X protein (Bax) can shuttle to different subcellular compartments in response to HI, thus triggering the different organelle-associated cell death signaling cascades resulting in cell death phenotype diversity. There was an early increase in intranuclear and total nuclear Bax protein levels followed by a later Bax redistribution to the mitochondria and endoplasmic reticulum (ER). Associated with the organelle-specific Bax shuttling time course, there was an increase in nuclear phosphorylated p53, cytosolic cleaved caspase-3, and caspase-12. When HI-treated P7 rats were resuscitated with 100% O(2) (HHI), there were increased lesion volumes as determined by T2-weighted magnetic resonance imaging with no change in cortical apoptotic signaling compared with HI treatment alone. There was, however, increased inflammatory (cytosolic-cleaved interleukin-1beta) and necrotic (increased nuclear 55-kDa-cleaved PARP-1 [poly-ADP-ribose 1] and decreased nuclear HMGB1 [nuclear high-mobility group box 1]) after HHI. Furthermore, HHI increased ER calpain activation and ER Bax protein levels compared with HI alone. These data suggest that 100% O(2) resuscitation increases Bax-mediated activation of ER cell death signaling, inflammation, and lesion volume by increasing necrotic-like cell death. In light of these findings, the use of 100% O(2) treatment for neonatal HI should be reevaluated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号