首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61篇
  免费   1篇
  国内免费   26篇
基础医学   3篇
临床医学   12篇
内科学   2篇
神经病学   2篇
特种医学   4篇
外科学   56篇
药学   8篇
肿瘤学   1篇
  2023年   1篇
  2019年   1篇
  2018年   2篇
  2016年   2篇
  2015年   2篇
  2013年   1篇
  2012年   3篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   5篇
  2007年   6篇
  2006年   10篇
  2005年   9篇
  2004年   10篇
  2003年   6篇
  2002年   4篇
  2001年   8篇
  2000年   3篇
  1999年   6篇
  1998年   1篇
  1997年   1篇
  1996年   3篇
排序方式: 共有88条查询结果,搜索用时 46 毫秒
1.
BACKGROUND: Cardiac output (CO) is likely to influence the pharmacokinetics of anesthetic drugs and should be accounted for in pharmacokinetic models. The influence of CO on the pharmacokinetic parameters of alfentanil in pigs was evaluated using compartmental and recirculatory models. METHODS: Twenty-four premedicated pigs were evaluated during halothane (0.6-2%) anesthesia. They were assigned randomly to one of three groups. One group served as control. In the other groups, the baseline CO was decreased or increased by 40% by pharmacologic intervention (propranolol or dobutamine). Boluses of alfentanil (2 mg) and indocyanine green (25 mg) were injected into the right atrium. Blood samples were taken for 150 min from the right atrium and aortic root. Arterial concentration-time curves of indocyanine green and alfentanil were analyzed using compartmental models (two-stage and mixed-effects approach) and a recirculatory model, which can describe lung uptake and early distribution. RESULTS: The CO of individual pigs varied from 1.33 to 6.44 l/min. Three-compartmental modeling showed that CO is a determinant of the central compartment volume (V1, r2 = 0.54), fast peripheral compartment volume (V2, r2 = 0.29), steady state distribution volume (Vss, r2 = 0.29), fast distribution clearance (Cl12, r2 = 0.39), and elimination clearance (Cl10, r2 = 0.51). Recirculatory modeling showed that CO is a determinant of total distribution volume (r2 = 0.48), elimination clearance (r2 = 0.54), and some distribution clearances. The pulmonary distribution volume was independent of CO. CONCLUSIONS: Cardiac output markedly influences the pharmacokinetics of alfentanil in pigs. Therefore, accounting for CO enhances the predictive value of pharmacokinetic models of alfentanil.  相似文献   
2.
BACKGROUND: The authors modeled the influence of remifentanil on the dynamics of sevoflurane using three parameters derived from the electroencephalogram: 95% spectral edge frequency (SEF), canonical univariate parameter (CUP), and Bispectral Index (BIS). METHODS: Thirty-six patients with American Society of Anesthesiologists physical status class I or II were recruited, of which 12 received a target remifentanil concentration of 0 ng/ml, eight 2 ng/ml, eight 4 ng/ml, and another eight 8 ng/ml. Next (before surgery), several step-wise changes in the end-tidal sevoflurane concentration (F(ET,sevo)) were performed. A data acquisition system simultaneously recorded F(ET,sevo), the raw electroencephalogram, BIS, and SEF. The authors used a combination of an effect compartment and an inhibitory sigmoid E(MAX) model to describe the relation between F(ET,sevo) and BIS, SEF, and CUP. Model parameters (t(1/2)k(e0), E(MAX), E(MIN), C(50), gamma, CUP weight factors) were estimated using the population data analysis program NONMEM. Significant remifentanil model parameter dependencies (P < 0.01) were determined. RESULTS: Determined from SEF, remifentanil had no effect on t(1/2)k(e0) (1.91 +/- 0.26 min [mean +/- standard error]) but caused an increase in C(50) (baseline = 1.48 +/- 0.12%; 80% increase at 8 ng/ml) and decrease in E(MIN) (baseline = 10.8 +/- 0.6 Hz; 80% reduction at 8 ng/ml). Determined from CUP, remifentanil caused a dose-dependent decrease in t(1/2)k(e0) (baseline = 4.31 +/- 1.00 min; 60% decrease at 8 ng/ml), with no effect on C(50) (baseline = 0.88 +/- 0.13%). Determined from BIS, remifentanil caused a dose-dependent decrease in t(1/2)k(e0) (baseline value = 3.11 +/- 0.32 min; 40% decrease at 8 ng/ml), without affecting C(50) (baseline = 1.12 +/- 0.05%). Median R(2) values of the pooled data set were 0.815 for SEF, 0.933 for CUP (P < 0.01 vs. SEF), and 0.952 for BIS (P < 0.01 vs. SEF and CUP). Addition of remifentanil increased the R(2) values for CUP only. CONCLUSIONS: Remifentanil accelerates sevoflurane blood-brain equilibration without affecting its hypnotic potency as determined from BIS and CUP. In terms of R(2), the authors' pharmacodynamic model describes the anesthetic-BIS relation best.  相似文献   
3.
Olofsen E  Dahan A 《The AAPS journal》2005,7(2):E383-E389
In this article we review how population pharmacokinetic/pharmacodynamic (PD) modeling has evolved in the specialty of anesthesiology, how anesthesiology benefited from the mixed-effects approach, and which features of modeling need careful attention. Key articles from the anesthesiology literature are selected to discuss the modeling of typical anesthesiological PD end points, such as level of consciousness and analgesia, interactions between hypnotics and analgesics, estimation with poor and sometimes rich data sets from populations of various sizes, covariate detection, covariances between random effects, and Bayesian forecasting.  相似文献   
4.
BACKGROUND: To study the influence of morphine on chemical control of breathing relative to the analgesic properties of morphine, the authors quantified morphine-induced analgesia and respiratory depression in a single group of healthy volunteers. Both respiratory and pain measurements were performed over single 24-h time spans. METHODS: Eight subjects (four men, four women) received a 90-s intravenous morphine infusion; eight others (four men, four women) received a 90-s placebo infusion. At regular time intervals, respiratory variables (breathing at a fixed end-tidal partial pressure of carbon dioxide of 50 mmHg and the isocapnic acute hypoxic response), pain tolerance (derived from a transcutaneous electrical acute pain model), and arterial blood samples were obtained. Data acquisition continued for 24 h. Population pharmacokinetic (sigmoid Emax)-pharmacodynamic models were applied to the respiratory and pain data. The models are characterized by potency parameters, shape parameters (gamma), and blood-effect site equilibration half-lives. All collected data were analyzed simultaneously using the statistical program NONMEM. RESULTS: Placebo had no systematic effect on analgesic or respiratory variables. Morphine potency parameter and blood-effect site equilibration half-life did not differ significantly among the three measured effect parameters (P > 0.01). The integrated NONMEM analysis yielded a potency parameter of 32 +/- 1.4 nm (typical value +/- SE) and a blood-effect site equilibration half-life of 4.4 +/- 0.3 h. Parameter gamma was 1 for hypercapnic and hypoxic breathing but 2.4 +/- 0.7 for analgesia (P < 0.01). CONCLUSIONS: Our data indicate that systems involved in morphine-induced analgesia and respiratory depression share important pharmacodynamic characteristics. This suggests similarities in central mu-opioid analgesic and respiratory pathways (e.g., similarities in mu-opioid receptors and G proteins). The clinical implication of this study is that after morphine administration, despite lack of good pain relief, moderate to severe respiratory depression remains possible.  相似文献   
5.
The authors investigated the progression of white matter hyperintensities (WMHs) in a large population of elderly men and women. After 3 years of follow-up, women had accumulated approximately twice as much deep WMH (DWMH) as men. The progression of periventricular WMH was the same for men and women. Gender differences may affect the pathogenesis of DWMH, which in turn may result in different clinical consequences in women.  相似文献   
6.
The aim of this work was to identify ventricular shape-based biomarkers in MR images to discriminate between patients with Alzheimer's disease (AD) and healthy elderly. Clinical MR images were collected for 58 patients and 28 age-matched healthy controls. After normalizing all the images the ventricular cerebrospinal fluid was semiautomatically extracted for each subject and an innovative technique for fully automatic shape modeling was applied to generate comparable meshes of all ventricles. The search for potential biomarkers was carried out with repeated permutation tests: results highlighted well-defined areas of the ventricular surface being discriminating features for AD: the left inferior medial temporal horn, the right medial temporal horn (superior and inferior), and the areas close to the left anterior part of the corpus callosum and the head of the right caudate nucleus. The biomarkers were then used as features to build an intelligent machine for AD detection: a Support Vector Machine was trained on AD and healthy subjects and subsequently tested with leave-1-out experiments and validation tests on previously unseen cases. The results showed a sensitivity of 76% for AD, with an overall accuracy of 84%, proving that suitable biomarkers for AD can be detected in clinical MR images.  相似文献   
7.
In this work, we aimed at correlating focal atrophy in periventricular structures with cognitive function, in the spectrum from healthy subjects to severe Alzheimer disease: 28 subjects with normal cognition and 84 patients presenting various degrees of cognitive impairment were included in the study. The cognitive level of each subject was assessed with the Mini-Mental State Examination (MMSE). Atrophy in periventricular structures was inferred by modeling and analyzing local shape variations of brain ventricles: for a given subject, we distinguished between the severity of atrophy, estimated as local enlargement (in mm) of the ventricular surface relative to an average normal subject, and the extent of atrophy, defined as the percentage of the ventricular surface (global or per anatomical region) significantly different from an average control. Linear regression across subjects was performed to evaluate the correlation between atrophy and MMSE score. The severity of atrophy showed good correlation with MMSE score in the left thalamus, the left temporal horn, the left corona radiata, and the right caudate nuclei. The extent of atrophy showed no significant correlations. In conclusion, the MMSE scores correlate with localized depth of atrophy in well-defined periventricular structures.  相似文献   
8.
9.
Background: To study the influence of morphine on chemical control of breathing relative to the analgesic properties of morphine, the authors quantified morphine-induced analgesia and respiratory depression in a single group of healthy volunteers. Both respiratory and pain measurements were performed over single 24-h time spans.

Methods: Eight subjects (four men, four women) received a 90-s intravenous morphine infusion; eight others (four men, four women) received a 90-s placebo infusion. At regular time intervals, respiratory variables (breathing at a fixed end-tidal partial pressure of carbon dioxide of 50 mmHg and the isocapnic acute hypoxic response), pain tolerance (derived from a transcutaneous electrical acute pain model), and arterial blood samples were obtained. Data acquisition continued for 24 h. Population pharmacokinetic (sigmoid Emax)-pharmacodynamic models were applied to the respiratory and pain data. The models are characterized by potency parameters, shape parameters ([gamma]), and blood-effect site equilibration half-lives. All collected data were analyzed simultaneously using the statistical program NONMEM.

Results: Placebo had no systematic effect on analgesic or respiratory variables. Morphine potency parameter and blood-effect site equilibration half-life did not differ significantly among the three measured effect parameters (P > 0.01). The integrated NONMEM analysis yielded a potency parameter of 32 +/- 1.4 nm (typical value +/- SE) and a blood-effect site equilibration half-life of 4.4 +/- 0.3 h. Parameter [gamma] was 1 for hypercapnic and hypoxic breathing but 2.4 +/- 0.7 for analgesia (P < 0.01).  相似文献   

10.
BACKGROUND: The objective of this investigation was to characterize the pharmacokinetic-pharmacodynamic relation of buprenorphine's antinociceptive effect in healthy volunteers. METHODS: Data on the time course of the antinociceptive effect after intravenous administration of 0.05-0.6 mg/70 kg buprenorphine in healthy volunteers was analyzed in conjunction with plasma concentrations by nonlinear mixed-effects analysis. RESULTS: A three-compartment pharmacokinetic model best described the concentration time course. Four structurally different pharmacokinetic-pharmacodynamic models were evaluated for their appropriateness to describe the time course of buprenorphine's antinociceptive effect: (1) E(max) model with an effect compartment model, (2) "power" model with an effect compartment model, (3) receptor association-dissociation model with a linear transduction function, and (4) combined biophase equilibration/receptor association-dissociation model with a linear transduction function. The latter pharmacokinetic-pharmacodynamic model described the time course of effect best and was used to explain time dependencies in buprenorphine's pharmacodynamics. The model converged, yielding precise estimation of the parameters characterizing hysteresis and the relation between relative receptor occupancy and antinociceptive effect. The rate constant describing biophase equilibration (k(eo)) was 0.00447 min(-1) (95% confidence interval, 0.00299-0.00595 min(-1)). The receptor dissociation rate constant (k(off)) was 0.0785 min(-1) (95% confidence interval, 0.0352-0.122 min(-1)), and k(on) was 0.0631 ml . ng(-1) . min(-1) (95% confidence interval, 0.0390-0.0872 ml . ng(-1) . min(-1)). CONCLUSION: This is consistent with observations in rats, suggesting that the rate-limiting step in the onset and offset of the antinociceptive effect is biophase distribution rather than slow receptor association-dissociation. In the dose range studied, no saturation of receptor occupancy occurred explaining the lack of a ceiling effect for antinociception.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号