首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   206798篇
  免费   2821篇
  国内免费   166篇
耳鼻咽喉   1426篇
儿科学   7073篇
妇产科学   3382篇
基础医学   20755篇
口腔科学   2575篇
临床医学   14436篇
内科学   38440篇
皮肤病学   1522篇
神经病学   18614篇
特种医学   10135篇
外科学   34211篇
综合类   2459篇
一般理论   1篇
预防医学   19017篇
眼科学   3328篇
药学   11870篇
中国医学   667篇
肿瘤学   19874篇
  2022年   233篇
  2021年   604篇
  2020年   347篇
  2019年   445篇
  2018年   22390篇
  2017年   17782篇
  2016年   19938篇
  2015年   1453篇
  2014年   1535篇
  2013年   1699篇
  2012年   8320篇
  2011年   22431篇
  2010年   19616篇
  2009年   12237篇
  2008年   20729篇
  2007年   22930篇
  2006年   1921篇
  2005年   3655篇
  2004年   4710篇
  2003年   5673篇
  2002年   3775篇
  2001年   1550篇
  2000年   1736篇
  1999年   1365篇
  1998年   608篇
  1997年   541篇
  1996年   395篇
  1995年   392篇
  1994年   355篇
  1993年   307篇
  1992年   863篇
  1991年   817篇
  1990年   860篇
  1989年   778篇
  1988年   767篇
  1987年   661篇
  1986年   639篇
  1985年   630篇
  1984年   409篇
  1983年   346篇
  1982年   175篇
  1980年   172篇
  1979年   324篇
  1978年   214篇
  1977年   155篇
  1975年   156篇
  1974年   233篇
  1973年   152篇
  1972年   165篇
  1969年   152篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Although dose reduction of S‐1 is recommended for patients with impaired renal function, dose modification for such patients has not been prospectively evaluated. The aim of the present study was to investigate the pharmacokinetic parameters of 5‐fluorouracil, 5‐chloro‐2,4 dihydroxypyridine and oteracil potassium, and to review the recommended dose modification of S‐1 in patients with renal impairment. We classified patients receiving S‐1 into 4 groups according to their renal function, as measured using the Japanese estimated glomerular filtration rate (eGFR) equation. The daily S‐1 dose was adjusted based on the patient's eGFR and body surface area. Blood samples were collected for pharmacokinetic analysis. A total of 33 patients were enrolled and classified into 4 groups as follows: 10 patients in cohort 1 (eGFR ≥ 80 mL/min/1.73 m2), 10 patients in cohort 2 (eGFR = 50‐79 mL/min/1.73 m2), 10 patients in cohort 3 (eGFR = 30‐49 mL/min/1.73 m2), and 3 patients in cohort 4 (eGFR < 30 mL/min/1.73 m2). Those in cohorts 3 and 4 treated with an adjusted dose of S‐1 showed a similar area under the curve for 5‐fluorouracil (941.9 ± 275.6 and 1043.5 ± 224.8 ng/mL, respectively) compared with cohort 2 (1034.9 ± 414.3 ng/mL). Notably, while there was a statistically significant difference between cohort 1 (689.6 ± 208.8 ng/mL) and 2 (= 0.0474) treated with an equal dose of S‐1, there was no significant difference observed in the toxicity profiles of the cohorts. In conclusion, dose adjustment of S‐1 in patients with impaired renal function using eGFR is appropriate and safe.  相似文献   
2.
Magnetic field generated by neuronal activity could alter magnetic resonance imaging (MRI) signals but detection of such signal is under debate. Previous researches proposed that magnitude signal change is below current detectable level, but phase signal change (PSC) may be measurable with current MRI systems. Optimal imaging parameters like echo time, voxel size and external field direction, could increase the probability of detection of this small signal change. We simulate a voxel of cortical column to determine effect of such parameters on PSC signal. We extended a laminar network model for somatosensory cortex to find neuronal current in each segment of pyramidal neurons (PN). 60,000 PNs of simulated network were positioned randomly in a voxel. Biot–savart law applied to calculate neuronal magnetic field and additional phase. The procedure repeated for eleven neuronal arrangements in the voxel. PSC signal variation with the echo time and voxel size was assessed. The simulated results show that PSC signal increases with echo time, especially 100/80 ms after stimulus for gradient echo/spin echo sequence. It can be up to 0.1 mrad for echo time = 175 ms and voxel size = 1.48 × 1.48 × 2.18 mm3. With echo time less than 25 ms after stimulus, it was just acquired effects of physiological noise on PSC signal. The absolute value of the signal increased with decrease of voxel size, but its components had complex variation. External field orthogonal to local surface of cortex maximizes the signal. Expected PSC signal for tactile detection in the somatosensory cortex increase with echo time and have no oscillation.  相似文献   
3.
4.
5.
6.
7.
Farnesyltransferase (FTase) is one of the prenyltransferase family enzymes that catalyse the transfer of 15-membered isoprenoid (farnesyl) moiety to the cysteine of CAAX motif-containing proteins including Rho and Ras family of G proteins. Inhibitors of FTase act as drugs for cancer, malaria, progeria and other diseases. In the present investigation, we have developed two structure-based pharmacophore models from protein–ligand complex (3E33 and 3E37) obtained from the protein data bank. Molecular dynamics (MD) simulations were performed on the complexes, and different conformers of the same complex were generated. These conformers were undergone protein–ligand interaction fingerprint (PLIF) analysis, and the fingerprint bits have been used for structure-based pharmacophore model development. The PLIF results showed that Lys164, Tyr166, TrpB106 and TyrB361 are the major interacting residues in both the complexes. The RMSD and RMSF analyses on the MD-simulated systems showed that the absence of FPP in the complex 3E37 has significant effect in the conformational changes of the ligands. During this conformational change, some interactions between the protein and the ligands are lost, but regained after some simulations (after 2 ns). The structure-based pharmacophore models showed that the hydrophobic and acceptor contours are predominantly present in the models. The pharmacophore models were validated using reference compounds, which significantly identified as HITs with smaller RMSD values. The developed structure-based pharmacophore models are significant, and the methodology used in this study is novel from the existing methods (the original X-ray crystallographic coordination of the ligands is used for the model building). In our study, along with the original coordination of the ligand, different conformers of the same complex (protein–ligand) are used. It concluded that the developed methodology is significant for the virtual screening of novel molecules on different targets.  相似文献   
8.
This paper takes a somewhat slant perspective on flourishing and care in the context of suffering, death and dying, arguing that care in this context consists principally of ‘acts of work and courage that enable flourishing’. Starting with the perception that individuals, society and health care professionals have become dulled to death and the process of dying in Western advanced health systems, it suggests that for flourishing to occur, both of these aspects of life need to be faced more directly. The last days of life need to be ‘undulled’. Reflections upon the experiences of the author as carer and daughter in the face of her mother’s experience of death are used as basis for making suggestions about how care systems and professionals might better assist people in dealing with ‘the most grown up thing’ humans ever do, which is to die.  相似文献   
9.
10.
Advancing nanomedicines from concept to clinic requires integration of new science with traditional pharmaceutical development. The medical and commercial success of nanomedicines is greatly facilitated when those charged with developing nanomedicines are cognizant of the unique opportunities and technical challenges that these products present. These individuals must also be knowledgeable about the processes of clinical and product development, including regulatory considerations, to maximize the odds for successful product registration. This article outlines these topics with a goal to accelerate the combination of academic innovation with collaborative industrial scientists who understand pharmaceutical development and regulatory approval requirements—only together can they realize the full potential of nanomedicines for patients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号