首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40376篇
  免费   2926篇
  国内免费   73篇
耳鼻咽喉   407篇
儿科学   1135篇
妇产科学   955篇
基础医学   5701篇
口腔科学   776篇
临床医学   3910篇
内科学   8419篇
皮肤病学   756篇
神经病学   4068篇
特种医学   1499篇
外国民族医学   9篇
外科学   5741篇
综合类   244篇
一般理论   45篇
预防医学   3340篇
眼科学   625篇
药学   2957篇
中国医学   61篇
肿瘤学   2727篇
  2023年   433篇
  2022年   233篇
  2021年   587篇
  2020年   636篇
  2019年   764篇
  2018年   1250篇
  2017年   1175篇
  2016年   1147篇
  2015年   984篇
  2014年   1121篇
  2013年   2037篇
  2012年   2711篇
  2011年   2892篇
  2010年   1475篇
  2009年   972篇
  2008年   2423篇
  2007年   2442篇
  2006年   2338篇
  2005年   2100篇
  2004年   2075篇
  2003年   1961篇
  2002年   1939篇
  2001年   1245篇
  2000年   1455篇
  1999年   880篇
  1998年   330篇
  1997年   243篇
  1996年   240篇
  1995年   260篇
  1994年   227篇
  1993年   226篇
  1992年   291篇
  1991年   290篇
  1990年   256篇
  1989年   255篇
  1988年   237篇
  1987年   197篇
  1986年   197篇
  1985年   279篇
  1984年   251篇
  1983年   210篇
  1982年   187篇
  1981年   169篇
  1980年   153篇
  1979年   177篇
  1978年   112篇
  1977年   122篇
  1975年   109篇
  1974年   87篇
  1973年   85篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.

Aims

To examine the influence of pre-existing psychiatric disorder on the choice of treatment in patients with gynaecological cancer.

Materials and methods

The analyses were based on all patients who underwent surgical treatment for endometrial, ovarian or cervical cancer who were registered in the Danish Gynecological Cancer Database in the years 2007–2014 (3059 patients with ovarian cancer, 5100 patients with endometrial cancer and 1150 with cervical cancer). Logistic regression model and Cox regression model, adjusted for relevant confounders, were used to estimate the effect of pre-existing psychiatric disorder on the course of cancer treatment. Our outcomes were (i) presurgical oncological treatment, (ii) macroradical surgery for patients with ovarian cancer, (iii) radiation/chemotherapy within 30 days and 100 days after surgery and (iv) time from surgery to first oncological treatment.

Results

In the group of patients with ovarian cancer, more patients with a psychiatric disorder received macroradical surgery versus patients without a psychiatric disorder, corresponding to an adjusted odds ratio of 1.24 (95% confidence interval 0.62–2.41) and the chance for having oncological treatment within 100 days was odds ratio = 1.26 (95% confidence interval 0.77–2.10). As for patients with endometrial cancer, all outcome estimates were close to unity. The adjusted odds ratio for oncological treatment within 30 days after surgery in patients with cervical cancer with a history of psychiatric disorder was 0.20 (95% confidence interval 0.03–1.54).

Conclusions

We did not find any significant differences in the treatment of ovarian and endometrial cancer in patients with pre-existing psychiatric diagnoses. When it comes to oncological treatment, we suggest that increased attention should be paid to patients with cervical cancer having a pre-existing psychiatric diagnosis.  相似文献   
2.
Climate change is increasing global temperatures and intensifying the frequency and severity of extreme heat waves. How organisms will cope with these changes depends on their inherent thermal tolerance, acclimation capacity, and ability for evolutionary adaptation. Yet, the potential for adaptation of upper thermal tolerance in vertebrates is largely unknown. We artificially selected offspring from wild-caught zebrafish (Danio rerio) to increase (Up-selected) or decrease (Down-selected) upper thermal tolerance over six generations. Selection to increase upper thermal tolerance was also performed on warm-acclimated fish to test whether plasticity in the form of inducible warm tolerance also evolved. Upper thermal tolerance responded to selection in the predicted directions. However, compared to the control lines, the response was stronger in the Down-selected than in the Up-selected lines in which evolution toward higher upper thermal tolerance was slow (0.04 ± 0.008 °C per generation). Furthermore, the scope for plasticity resulting from warm acclimation decreased in the Up-selected lines. These results suggest the existence of a hard limit in upper thermal tolerance. Considering the rate at which global temperatures are increasing, the observed rates of adaptation and the possible hard limit in upper thermal tolerance suggest a low potential for evolutionary rescue in tropical fish living at the edge of their thermal limits.

Globally, both mean and extreme environmental temperatures are increasing due to climate change with mean temperatures predicted to increase by 0.3–4.8 °C by the end of the century (1, 2). Aquatic ectotherms are particularly vulnerable to rising temperatures as their body temperature closely tracks the environmental temperature (3). These organisms can avoid thermal stress by migrating to cooler waters, acclimating, and/or adapting genetically (46). For species with a limited dispersal ability (e.g., species from shallow freshwater habitats; ref. 7), acclimation and evolutionary adaptation are the only possible strategies. Furthermore, for ectotherms living at the edge of their upper thermal limits, an increase in extreme temperatures may generate temperature peaks that exceed physiological limits and cause high mortality (5, 810). Although this is expected to cause strong selection toward higher upper thermal tolerance, it is largely unknown, particularly within vertebrates, whether and at what rate organisms may adapt by evolving their thermal limits (1114). These are important issues because constrained or limited evolvability (15) of upper thermal tolerance could lead to population extinctions as climate change increases the severity of heat waves.Ectotherms can also increase their thermal limits through physiological and biochemical adjustments, in a process known as thermal acclimation when they are exposed to elevated temperatures for a period of time (16, 17). Thermal acclimation, sometimes called thermal compensation, is here used interchangeably with the term physiological plasticity as outlined by Seebacher et al. (18). In the wild, individuals may experience days or weeks of warmer temperatures prior to a thermal extreme. Through physiological plasticity, the severity of an ensuing thermal extreme may be reduced, thus increasing the chance for survival (19). Furthermore, in some cases, adaptation can be accelerated by plasticity (2022). This requires that the physiological mechanisms responsible for acclimation are also (at least partly) involved in the acute response; that is, that there is a positive genetic correlation between physiological plasticity and (acute) upper thermal tolerance. It is therefore crucial to quantify the evolutionary potential of upper thermal tolerance of fish populations threatened by climate change (23, 24) and to understand the link between the evolutionary response of upper thermal tolerance and physiological plasticity.Previously detected evolution of upper thermal tolerance generally points toward a slow process (12, 13, 2531). However, estimates of the evolutionary potential in upper thermal tolerance mostly come from studies on Drosophila (12, 25, 27, 32), and empirical evidence in aquatic ectotherms and specifically vertebrates is limited. The few studies that have been performed on fish show disparate responses to selection on heat tolerance even within the same species. Baer and Travis (33) detected no response to selection yet Doyle et al. (34) and Klerks et al. (28) detected selection responses with heritabilities of 0.2 in killifish (Heterandria formosa). Despite the typical asymmetry of thermal performance curves (3, 35), studies in vertebrates are limited to unidirectional estimates of evolutionary potential (28, 31, 33) or do not account for the direction of evolution when estimating heritability in upper thermal tolerance from breeding designs (36, 37). Furthermore, while several studies have found that populations with different thermal histories have evolved different levels of heat tolerance (2931), we still lack a good understanding of how physiological plasticity within a generation, in response to a short heat exposure, interacts with genetic changes during evolution of thermal tolerance.To investigate possible asymmetry in the evolutionary potential of upper thermal tolerance in a vertebrate species, we artificially selected offspring of wild-caught zebrafish (Danio rerio) to increase and decrease upper thermal tolerance for six generations. Furthermore, to disentangle the contribution of acclimation from the genetic response to increase upper thermal tolerance, we selected two lines that were exposed to a period of warm acclimation prior to a thermal challenge. The size (>20,000 phenotyped fish) and duration (six generations) of this study are unique in a vertebrate species for a climate change-relevant selection experiment, and the results provide critical and robust information on how tropical fish may adapt to a changing climate.Being a freshwater and tropical species, zebrafish are likely to be especially vulnerable to climate change (7, 38). In the wild, zebrafish can already be found living only a few degrees below their thermal limits (17, 39) and live in shallow streams and pools (40) that have the potential to rapidly warm during heat waves. Zebrafish therefore represent a species living at the edge of its thermal limit in which rapid adaptation of thermal tolerance would be particularly beneficial for its survival. Wild-caught zebrafish originating from different sites in West Bengal, India (17, 40), were used to maximize the genetic diversity of the parental population. These wild-caught zebrafish (n = 2,265) served as parents of the starting F0 generation (n = 1,800) on which we selected upper thermal tolerance for six generations. Upper thermal tolerance was measured as the critical thermal maximum (CTmax), a commonly used measure of an organism’s acute upper thermal tolerance (16, 41). CTmax is defined as the temperature at which an individual loses equilibrium (i.e., uncontrolled and disorganized swimming in zebrafish; ref. 42) during thermal ramping. Measuring CTmax is rapid, repeatable, and does not appear to harm zebrafish (42). CTmax is ecologically relevant because it is highly correlated with both tolerance to slow warming (43) and to the upper temperature range boundaries of wild aquatic ectotherms (9).Our selection experiment consisted of four treatment groups (Up-selected, Down-selected, Acclimated Up-selected, and Control) with two replicate lines in each treatment. We established these lines by selecting fish on their CTmax in the F0 generation with each line consisting of 150 individuals (see Methods for further details of F0 generation). The offspring of those fish formed the F1 generation that consisted of 450 offspring in each line. At each generation, the Up, Down, and Control lines were all held at optimal temperature (28 °C) (39), whereas the Acclimated Up-selected lines were acclimated to a supraoptimal temperature (32 °C) for 2 wk prior to selection (17). From the F1 to F6 generations, we measured CTmax for all 450 fish in each line and selected the 33% with the highest CTmax in the Up-selected and in the Acclimated Up-selected lines, and the 33% with the lowest CTmax in the Down-selected lines. In the Control lines, 150 fish were randomly selected, measured, and retained. Thus, CTmax was measured on a total of 3,000 fish per generation and 150 individuals remained in each of the eight lines after selection, forming the parents for the next generation. The nonselected lines (Control) represented a control for the Up-selected and Down-selected lines, while the Up-selected lines represented a control for the Acclimated Up-selected lines, because these two treatments solely differed by the acclimation period to which the latter were exposed before selection. Thus, differences in CTmax between Up-selected and Acclimated Up-selected lines represent the contribution of physiological plasticity to upper thermal tolerance. If the difference between these two treatments increases during selection, it would suggest that plasticity increases during adaptation to higher CTmax (i.e., the slope the reaction norm describing the relationship between CTmax and acclimation temperature would become steeper).After six generations of selection, upper thermal tolerance had evolved in both the Up-selected and the Down-selected lines (Fig. 1). In the Up-selected lines, upper thermal tolerance increased by 0.22 ± 0.05 °C (x̄ ± 1 SE) compared to the Control lines whereas the Down-selected lines displayed a mean upper thermal tolerance 0.74 ± 0.05 °C lower than the Control (Fig. 1B; estimates for replicated lines combined). The asymmetry in the response to selection was confirmed by the estimated realized heritability, which was more than twice as high in the Down-selected lines (h2 = 0.24; 95% CI: 0.19–0.28) than in the Up-selected lines (h2 = 0.10; 95% CI: 0.05–0.14; Fig. 2).Open in a separate windowFig. 1.Upper thermal tolerance (CTmax) of wild-caught zebrafish over six episodes of selection. Duplicated lines were selected for increased (Up-selected, orange lines and triangles) and decreased (Down-selected, blue lines and squares) upper thermal tolerance. In addition, we had two Control lines (green dashed lines and diamonds). The Up, Down, and Control lines were all acclimated to a temperature of 28 °C. In addition, two lines were selected for increased upper thermal tolerance after 2 wk of warm acclimation at 32 °C (Acclimated Up-selected, red lines and circles). At each generation, the mean and 95% CIs of each line are shown (n ∼ 450 individuals per line). (A) Absolute upper thermal tolerance values. (B) The response to selection in the Up and Down lines centered on the Control lines (dashed green line). Difference between Up-selected and Acclimated-Up lines are shown in Fig. 3. The rate of adaptation (°C per generation) is reported for each treatment using estimates obtained from linear mixed effects models using the Control-centered response in the Up-selected and Down-selected lines and the absolute response for the Acclimated-Up lines (SE = ±0.01 °C in all lines).Open in a separate windowFig. 2.Realized heritability (h2) of upper thermal tolerance (CTmax) in wild-caught zebrafish. The realized heritability was estimated for each treatment as the slope of the regression of the cumulative response to selection on the cumulative selection differential using mixed effect models passing through the origin with replicate as a random effect. Slopes are presented with their 95% CIs (shaded area) for the Down-selected lines (blue) and Up-selected lines (orange). Data points represent the mean of each replicate line (n ∼ 450) over six generations of selection. Average selection differentials are 0.57 (Down) and 0.39 (Up), respectively, see SI Appendix, Table S1 for more information.At the start of the experiment (F0), warm acclimation (32 °C) increased thermal tolerance by 1.31 ± 0.05 °C (difference in CTmax between the Up-selected and Acclimated Up-selected lines in Figs. 1A and and3),3), which translates to a 0.3 °C change in CTmax per 1 °C of warming. In the last generation, the effect of acclimation had decreased by 25%, with the Acclimated-Up lines having an average CTmax 0.98 ± 0.04 °C higher than the Up lines (Fig. 3). This suggests that, despite a slight increase in CTmax in the Acclimated Up-selected lines during selection, the contribution of plasticity decreased over the course of the experiment.Open in a separate windowFig. 3.Contribution of acclimation to the upper thermal tolerance in the Acclimated-Up selected lines at each generation of selection. The contribution of acclimation was estimated as the difference between the Up and Acclimated-Up selected lines. Points and error bars represent the estimates (±SE) from a linear mixed effects model with CTmax as the response variable; Treatment (factor with two levels: Up and Acclimated Up), Generation (factor with seven levels), and their interaction as the predictor variables; and replicate line as a random factor.During the experiment, the phenotypic variation of CTmax that was left-skewed at F0 increased in the Down-selected lines and decreased in the Up-selected lines (Fig. 4). At the F6 generation, phenotypic variance was four times lower in the Up-selected lines (0.09 ± 0.01 and 0.12 ± 0.02 °C2; variance presented for each replicate line separately and SE obtained by nonparametric bootstrapping) than in the Down-selected lines (0.41 ± 0.03 and 0.50 ± 0.04 °C2), which had doubled since the start of the experiment (F0: 0.20 ± 0.01 °C2, see SI Appendix, Fig. S1). In the Acclimated Up-selected lines, the phenotypic variance that was already much lower than the Control at the F0 also decreased and reached 0.06 ± 0.01 °C2 and 0.07 ± 0.01 °C2 for the two replicates at the last generation (SI Appendix, Fig. S1).Open in a separate windowFig. 4.Distribution of upper thermal tolerance (CTmax) in selected lines. (A) Distribution for each line at each generation (F0 to F6). In the F0 generation, histograms show the preselection distribution in gray for the nonacclimated fish, in dark green for the Control lines, and in red for the Acclimated-Up fish. In all subsequent generations the Down-selected lines are in blue, the Up-selected lines in yellow, the Control lines in dark green, and Acclimated-up lines in red. All treatments use two shades, one for each replicate line. Dashed lines represent the mean CTmax for each line (n ∼ 450 individuals). (B) Distribution of upper thermal tolerance at the start (F0, in gray) and the end (F6, in blue and yellow) of the experiment for the Up-selected and Down-selected lines. The dashed gray line represents the mean of the Up-selected and Down-selected lines in the F0 generation preselection (n ∼ 900 individuals). Dashed blue and yellow lines represent the mean CTmax for Up and Down-selected lines for the F6 generation (n ∼ 450 individuals).Together with the asymmetrical response to selection and the lower response of the Acclimated Up-selected lines, these changes in phenotypic variance suggest the existence of a hard-upper limit for thermal tolerance (e.g., major protein denaturation (44), similar to the “concrete ceiling” for physiological responses to warming (14)). Such a hard-upper limit is expected to generate a nonlinear mapping of the genetic and environmental effects on the phenotypic expression of CTmax. This nonlinearity will affect the phenotypic variance of CTmax when mean CTmax approaches its upper limit (SI Appendix, Fig. S2A). For example, with directional selection toward higher CTmax, genetic changes in upper thermal tolerance will translate into progressively smaller phenotypic changes. Similarly, warm acclimation that shifts CTmax upwards will also decrease phenotypic variation in CTmax (see differences in phenotypic variance between control and Acclimated lines at the F0). This hard ceiling can also explain why an evolutionary increase in CTmax reduces the magnitude of physiological plasticity in CTmax achieved after a period of acclimation (Fig. 3 and see SI Appendix, Fig. S2B). If the sum of the genetic and plastic contributions to CTmax cannot exceed a ceiling value, this should generate a zero-sum gain between the genetic and plastic determinants of thermal tolerance. An increase in the genetic contribution to CTmax via selection should thus decrease the contribution of plasticity. Selection for a higher CTmax should therefore negatively affect the slope of the reaction norm of thermal acclimation because acclimation will increase CTmax more strongly at low than high acclimation temperature (SI Appendix, Fig. S2B).To test this hypothesis, we measured CTmax in all selected lines at the final generation (F6) after acclimation to 24, 28, and 32 °C. At all three acclimation temperatures, the Acclimated-Up lines did not differ from the Up-selected lines (average difference 0.14 ± 0.08 °C; 0.12 ± 0.09 °C; 0.14 ± 0.09 °C; at 24, 28, and 32 °C respectively; Fig. 5). This suggests that warm acclimation prior to selection did not affect the response to selection. However, considering the within-treatment differences in CTmax between fish acclimated to 28 and 32 °C, we show that the gain in CTmax due to acclimation decreases in both the Up and Acclimated-Up treatments compared to the Control and Down treatments (SI Appendix, Fig. S3). This confirms a loss of thermal plasticity in both Up-selected treatments (Up and Acclimated-Up) at higher acclimation temperatures. Notably, the loss of thermal plasticity is not evident in fish acclimated to 24 and 28 °C, possibly because at these temperatures CTmax remains further away from its hard upper limit.Open in a separate windowFig. 5.Upper thermal tolerance (CTmax) of the selected lines measured at the last generation (F6) after acclimation at 24, 28, and 32 °C. The response is calculated as the mean difference in upper thermal tolerance (CTmax) relative to the Control lines. Large points and whiskers represent mean ±1 SE for each treatment (n = 120 individuals): Up-selected (orange triangles), Down-selected (blue squares), Acclimated Up-selected (red circles), and Control (green diamonds). Smaller translucent points represent means of each replicate line (n = 60 individuals). See SI Appendix, Fig. S3 for absolute CTmax values and model estimates.Acclimated Up-selected lines are perhaps the most ecologically relevant in our selection experiment. In the wild, natural selection on upper thermal tolerance may not result from increasing mean temperatures but through rapid heating events such as heat waves (45). During heat waves, temperature may rise for days before reaching critical temperatures. This gives individuals the possibility to acclimate and increase their upper thermal tolerance prior to peak temperatures. Our results show that while warm acclimation allowed individuals to increase their upper thermal tolerance, it did not increase the magnitude or the rate of adaptation of upper thermal tolerance.For the past two decades it has been recognized that rapid evolution, at ecological timescales, occurs and may represent an essential mechanism for the persistence of populations in rapidly changing environments (24, 46, 47). Yet, in the absence of an explicit reference, rates of evolution are often difficult to categorize as slow or rapid (48). For traits related to thermal tolerance or thermal performance, this issue is complicated by the fact that the scale on which traits are measured (temperature in °C) cannot meaningfully be transformed to a proportional scale. This prevents us from comparing rates of evolution between traits related to temperature with other traits measured on different scales (49, 50). However, for thermal tolerance, the rate of increase in ambient temperature predicted over the next century represents a particularly meaningful standard against which the rate of evolution observed in our study can be compared.In India and surrounding countries where zebrafish are native, heat waves are predicted to increase in frequency, intensity, and duration, and maximum air temperatures in some regions are predicted to exceed 44 °C in all future climate scenarios (51). Air temperature is a good predictor of water temperature in shallow ponds and streams where wild zebrafish are found (17, 40, 52, 53). Thus, strong directional selection on the thermal limits of zebrafish is very likely to occur in the wild. At first sight, changes in the upper thermal tolerance observed in our study (0.04 °C per generation) as well as the heritability estimates (Down-selected: h2 = 0.24, Up-selected: h2 = 0.10) similar to those obtained in fruit flies (Drosophila melanogaster) selected for acute upper thermal tolerance (Down-selected: h2 = 0.19, Up-selected: h2 = 0.12; ref. 12), suggest that zebrafish may just be able to keep pace with climate change and acutely tolerate temperatures of 44 °C predicted by the end of the century. However, several cautions make such an optimistic prediction unlikely.First, such an extrapolation assumes a generation time of 1 y, which is likely for zebrafish but unrealistic for many other fish species. Second, such a rate of evolution is associated with a thermal culling of two-thirds of the population at each generation, a strength of selection that may be impossible to sustain in natural populations exposed to other selection pressures such as predation or harvesting. Third, the heritability and rate of adaptation toward higher upper thermal tolerance observed here may be considered as upper estimates because of the potentially high genetic variance harbored by our parental population where samples from several sites were mixed. While mixing of zebrafish populations often occurs in the wild during monsoon flooding (54, 55), there are likely to be some isolated populations that may have a lower genetic diversity and adaptation potential than our starting population. Finally, and most importantly, the reduced phenotypic variance and decreased acclimation capacity with increasing CTmax observed in our study suggest the existence of a hard-upper limit to thermal tolerance that will lead to an evolutionary plateau similar to those reached in Drosophila selected for increased heat resistance over many generations (12, 56). Overall, the rate of evolution observed in our study is likely higher than what will occur in the wild and, based on this, it seems unlikely that zebrafish, or potentially other tropical fish species, will be able to acutely tolerate temperatures predicted by the end of the century. It is possible that other fish species, especially those living in cooler waters and with wider thermal safety margins, will display higher rates of adaptation than the ones we observed here, and more studies of this kind in a range of species are needed to determine whether slow adaptation of upper thermal tolerance is a general phenomenon.Transgenerational plasticity (e.g., epigenetics) has been suggested to modulate physiological thermal tolerance (57). However, the progressive changes in CTmax observed across generations in our study indicate that these changes were primarily due to genetic changes because effects of transgenerational plasticity are not expected to accumulate across generations. Therefore, the effects of transgenerational plasticity in the adaptation of upper thermal tolerance may be insufficient to mitigate impacts of climate change on zebrafish, yet the potential contribution of transgenerational plasticity is still an open question.By phenotyping more than 20,000 fish over six generations of selection, we show that evolution of upper thermal tolerance is possible in a vertebrate over short evolutionary time. However, the evolutionary potential for increased upper thermal tolerance is low due to the slow rate of adaptation compared to climate warming, as well as the diminishing effect of acclimation as adaptation progresses. Our results thus suggest that fish populations, especially warm water species living close to their thermal limits, may struggle to adapt with the rate at which water temperatures are increasing.  相似文献   
3.
4.
5.
Reported in this paper are postoperative results recorded from 120 patients, 3 years after selective proximal vagotomy for uncomplicated duodenal ulcer. There was no intraoperative lethality and no recurrence in 96.7 per cent of all cases, while Visick grades I on II were recorded from 98.2 per cent. Radiologically and gastroscopically detected pathological processes receded soon. Average postoperative reduction in acid secretion was 66.2 per cent in BAO and 46.8 per cent in MAO. Acid values re-increased thereafter, and three years later reduction rates still amounted to 43.7 per cent in BAO and 28.6 per cent in MAO. Indications for proximal gastric vagotomy are discussed in some detail.  相似文献   
6.
We present 36 consecutive patients with intrinsic glioma of the pons. Tumors with exophytic expansion were excluded. There were 16 females and 20 males, ranging in age from 2 to 13 years, median 6 years. The most common presenting symptoms were cranial nerve dysfunction. unsteadiness of gait, and hemiparesis. Computed tomography (CT) showed a hypodense (17/21) or isodense (4/21) expansion of the pons. Five tumors had areas of contrast enhancement. Following information about prognosis and possible types of management, parents decided for or against radiation therapy: twentyfour children underwent irradiation and 12 did not. Median survival among children receiving a full course of irradiation was 280 days, compared to 140 days in an equivalent group of non-irradiated children. Hemiparesis presenting without cranial nerve symptoms and contrast enhancement on CT scan were poor prognostic factors, whereas sex, age, and duration of symptoms at diagnosis were unrelated to prognosis.  相似文献   
7.
We found that thirteen per cent of all head and neck malignomas are malignant lymphomas. In 75% of these cases the Non-Hodgkin type could be found. The major salivary glands were involved by the lymphoma in 55% out of 104 patients. Paraglandular lymph nodes of the parotid gland were affected as well as intraglandular lymph nodes and the lymphoid tissue within the gland proper. The submandibular gland normally shows an involvement only with its paraglandular lymph nodes. Two thirds of the Non-Hodgkin lymphomas located in the salivary glands were low-grade. In case of clinical suspicion of a malignant lymphoma, fine needle biopsy is required for cytological diagnosis. However, surgery is mandatory for histological diagnosis, not as a therapeutic measure.  相似文献   
8.
Occupational diseases Nos. 2108 and 2110 correspond to intervertebral disc-related diseases of the lumbar spine from many years of carrying or lifting heavy loads, occupations in extreme postures of full flexion or oscillation of the whole body when seated, and which compel the cessation of all activities which are or could be the cause for the origin, exacerbation or recurrence of the disease. These occupational diseases came into force at the start of 1993, but there have been considerable problems in their implementation. The present Part I of the contribution is the result of the work of an interdisciplinary study group and contains medical criteria for the assessment of possibly strain-related clinical characteristics and the evaluation of other possible causes. Part II is to be published in Volume 4/2005 and will deal with questions related to forced cessation and to the assessment of the loss of earning ability. Agreement was reached in many areas related to the assessment of occupational claims. This should allow for evidence-based decision making in the future for the occupational diseases Nos. 2108 and 2110.  相似文献   
9.
10.
PURPOSE: To evaluate the pattern of neurological late effects in patients who have received surgery only for a brain tumor in childhood and to identify possible risk factors for neurological sequelae. PATIENTS AND METHODS: The medical, histologic, and operative records were reviewed for 65 consecutive patients operated for a benign brain tumor from 1970 to 1997, and all patients were re-examined after a median length of follow-up of 10.7 years. Thirty-four patients had posterior fossa tumors, 22 patients had cerebral hemisphere tumors, and nine patients had midline tumors. RESULTS: At the time of follow-up, 20 patients (31%) had no neurological deficits, 22 patients (34%) had minor deficits that did not interfere with their daily life activities, and 23 patients (35%) had moderate or severe deficits such as severe ataxia, spastic paresis, seriously reduced vision, or epilepsy with more than two seizures per year. Fourteen of the 31 patients (45%) registered with ataxia preoperatively had recovered fully. Six of seven patients had persistence of a pre- or postoperatively developed hemiparesis. Thirteen of 23 patients had persistence of cranial nerve deficits that developed second to surgery. Fifty-five percent of the 18 patients with seizures at diagnosis were seizure-free at follow-up. At follow-up both ataxia and hemiparesis were significantly more frequent among females (P =.02 and P =.03, respectively). CONCLUSION: In patients who received operation as the only treatment for their brain tumor, there was a good chance of total or partial recovery of preoperative and postoperative neurological deficits, although only one third of the patients will have no long-term neurological deficits.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号