首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
基础医学   2篇
外科学   8篇
  2023年   1篇
  2014年   2篇
  2013年   4篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
排序方式: 共有10条查询结果,搜索用时 31 毫秒
1
1.
2.

Purpose

The aim of the second part of the study was to investigate the influence of parameters that lead to increased facet joint contact or capsule tensile forces (disc height, lordosis, and sagittal misalignment) on the clinical outcome after total disc replacement (TDR) at the lumbosacral junction.

Methods

A total of 40 patients of a prospective cohort study who received TDR because of degenerative disc disease or osteochondrosis L5/S1 were invited to an additional follow-up for clinical (ODI and VAS for overall, back, and leg pain) and radiographic analysis (a change in disc height, lordosis, or sagittal vertebral misalignment compared with the preoperative state). Based on the final ODI, patients were retrospectively distributed into groups N (normal: <25 %) or F (failure ≥25 %) for radiographic parameter comparison. A correlation analysis was performed between the clinical and radiological results.

Results

A total of 34 patients were available at a mean follow-up of 59.5 months. Both groups (N = 24; F = 10 patients) presented a significant improvement in overall pain, back pain, and ODI over time. At the final follow-up, higher clinical scores correlated with a larger disc height, increased lordosis, and posterior translation of the superior vertebra, which was also reflected by significant differences in these parameters in the group comparison.

Conclusions

Parameters associated with increased facet joint capsule tensile forces lead to an inferior clinical outcome at mid-term follow-up. When performing TDR, we therefore suggest avoiding iatrogenic posterior translation and overdistraction (and consecutive lordosis).  相似文献   
3.

Purpose

After total disc replacement with a ball-and-socket joint, reduced range of motion and progression of facet joint degeneration at the index level have been described. The aim of the study was to test the hypothesis that misalignment of the vertebrae adjacent to the implant reduces range of motion and increases facet joint or capsule tensile forces.

Methods

A probabilistic finite element analysis was performed using a lumbosacral spine model with an artificial disc at level L5/S1. Misalignment of the L5 vertebra, the gap size of the facet joints, the transection of the posterior longitudinal ligament, and the spinal shape were varied. The model was loaded with pure moments.

Results

Misalignment of the L5 vertebra reduced the range of motion up to 2°. A 2-mm displacement of the L5 vertebra in the anterior direction already led to facet joint forces of approximately 240 N. Extension, lateral bending, and axial rotation caused maximum facet joint forces between 280 and 380 N, while flexion caused maximum forces of approximately 200 N. A 2-mm displacement in the posterior direction led to capsule forces of approximately 80 N. Additional moments increased the maximum facet capsule forces to values between 120 and 230 N.

Conclusions

Misalignment of the vertebrae adjacent to an artificial disc strongly increases facet joint or capsule forces. It might, therefore, be an important reason for unsatisfactory clinical results. In an associated clinical study (Part 2), these findings are validated.  相似文献   
4.
Knowledge about in vivo spinal compressive forces is a basic requirement for spinal biomechanics. Their direct measurement is not yet possible. Therefore, compressive forces are estimated from in vivo measured intradiscal pressure values. However, it is still not evident how precise these estimations are.A finite element model of the spine was employed to simulate elementary body positions and the compressive force at level L4-5 was calculated. This value was compared with different estimations calculated by multiplying the intradiscal pressure with the disc's cross-sectional area and with a correction factor. A model specific and different previously employed correction factors were used. Separately, in vivo forces were estimated from previously measured pressure values.A model specific correction factor leads for all body positions to a good estimation (error <4%) of the force except for extension (error >27%). Non-model specific correction factors lead to estimation errors of up to 44%. When accounting for these limitations, in vivo forces were estimated e.g. for standing between 430 N and 600 N.Compressive forces can be estimated for non-extended body positions when the individual correction factor is known. In vivo forces can be estimated from intradiscal pressure values within a certain range.  相似文献   
5.

Background context

Sitting is frequently assumed to cause high spinal loads because people with sedentary work often suffer from low back pain. It is assumed that the posture while sitting, as well as several seat parameters, also affects the spinal loads.

Purpose

To measure the loads on a spinal implant for different upper body inclinations, backrest declinations, seat heights, types of seat, and arm positions.

Study design

Loads on a vertebral body replacement during sitting were measured in five patients with telemeterized implants.

Methods

The telemeterized vertebral body replacement measures all six load components. It was implanted into five patients suffering from compression fractures of a lumbar vertebral body. Loads were measured when the patients were sitting on a stool and inclining their upper body between 15° flexion and 10° extension in steps of 5°; on a chair with an adjustable backrest that allowed declination angles between 108° and 180°; on an office chair while the seat height was varied between 40 and 60 cm in steps of 5 cm; and successively on seven different types of seats. The effect of the arm position was also studied.

Results

The resultant implant force was increased on the average by 48% for 15° flexion and decreased by 19% for 10° extension of the trunk. When sitting on a chair with an adjustable backrest, the loads decreased with an increasing backrest declination angle. The seat height had in most cases only a minor effect on implant loads. In comparison to sitting on a stool, the loads were reduced when sitting on a bench (7%) or a stool with a padded wedge (9%), a knee stool (19%), a chair (35%), and an office chair (41%). Sitting on a physiotherapy ball increased the loads by 7%. Placing the hands on the thighs reduced the implant loads on the average by 19% in comparison to arms hanging on the sides.

Conclusion

Spinal loads can be reduced by leaning against the backrest, placing the arms on the armrest or the thighs, and by decreasing the flexion angle of the upper body.  相似文献   
6.
In in vitro studies of the lumbar spine simplified loading modes (compressive follower force, pure moment) are usually employed to simulate the standard load cases flexion-extension, axial rotation and lateral bending of the upper body. However, the magnitudes of these loads vary widely in the literature. Thus the results of current studies may lead to unrealistic values and are hardly comparable. It is still unknown which load magnitudes lead to a realistic simulation of maximum lateral bending. A validated finite element model of the lumbar spine was used in an optimisation study to determine which magnitudes of the compressive follower force and bending moment deliver results that fit best with averaged in vivo data. The best agreement with averaged in vivo measured data was found for a compressive follower force of 700 N and a lateral bending moment of 7.8 Nm. These results show that loading modes that differ strongly from the optimised one may not realistically simulate maximum lateral bending. The simplified but in vitro applicable loading cannot perfectly mimic the in vivo situation. However, the optimised magnitudes are those which agree best with averaged in vivo measured data. Its consequent application would lead to a better comparability of different investigations.  相似文献   
7.

Purpose

Little is known about the number of spinal movements in the sagittal plane in daily life, mainly due to the lack of adequate techniques to assess these movements. Our aim was to measure these movements in asymptomatic volunteers.

Methods

Two sensor strips based on strain gauge technology (Epionics SPINE system) were fixed on the skin surface of the back parallel to the spine on a total of 208 volunteers without back pain. First, the lordosis angle was determined during relaxed standing. The volunteers were then released to daily life. The increases and decreases in the back lumbar lordosis angle over a period of 24 h were determined and classified into 5° increments. Changes in the lordosis angle greater than 5° were considered.

Results

The median number of spinal movements performed within 24 h was approximately 4,400. Of these movements, 66 % were between 5° and 10°. The proportions of higher-magnitude lordosis angle changes were much lower (e.g., 3 % for the 20–25° movement bin). Surprisingly, the median total number of movements was significantly higher (29 %) in women than in men. Large inter-individual differences were observed in the number of movements performed. The volunteers spent a median of 4.9 h with the lumbar spine flexed between 20° and 30° and only 24 min with the spine extended relative to the reference standing position. A median of 50 movements reached or exceeded full-flexion angle and zero movements full-extension angle.

Conclusions

These data illustrate the predominantly small range of movement of the spine during daily activities and the small amount of time spent in extension. These unique data strongly contribute to the understanding of patients’ everyday behavior, which might affect the development and testing of spinal implants and the evaluation of surgical and nonsurgical treatments.  相似文献   
8.
9.
10.

Purpose

To determine the postoperative temporal course of the forces acting on a vertebral body replacement (VBR) for two well reproducible activities.

Methods

A telemeterised VBR was implanted in five patients. It allows the measurement of six load components. Implant loads were measured in up to 28 measuring sessions for different activities, including standing and walking.

Results

The postoperative temporal course of the resultant implant forces measured during standing and walking was similar in each patient, but the patterns varied strongly from patient to patient. In one patient, the forces decreased in the first year and then increased in the following 4 years. In another patient, the forces increased in the first few months and then decreased. In a third patient, the forces varied only slightly in the postoperative time. In two patients, there was a strong drop of the implant force in the first two postoperative months. The force was on average approximately 100 N or 71 % higher for walking than for standing.

Conclusions

The strong force reduction in the first 2 months is most likely caused by implant subsidence, and the force reduction over a period of more than 6 months is most likely caused by fusion of the vertebrae adjacent to the VBR. The short-term force increase could be attributed to bone atrophy at the index level, and the long-term force increase could be attributed to an increase in the thoracic spine kyphosis angle.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号