首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   221篇
  免费   18篇
  国内免费   1篇
耳鼻咽喉   3篇
儿科学   6篇
妇产科学   2篇
基础医学   51篇
口腔科学   2篇
临床医学   32篇
内科学   29篇
神经病学   39篇
特种医学   11篇
外科学   30篇
综合类   2篇
预防医学   19篇
眼科学   2篇
药学   5篇
肿瘤学   7篇
  2023年   4篇
  2022年   4篇
  2021年   7篇
  2020年   3篇
  2019年   6篇
  2018年   6篇
  2017年   6篇
  2016年   3篇
  2015年   9篇
  2014年   6篇
  2013年   5篇
  2012年   5篇
  2011年   7篇
  2010年   7篇
  2009年   3篇
  2008年   13篇
  2007年   9篇
  2006年   13篇
  2005年   7篇
  2004年   9篇
  2003年   15篇
  2002年   11篇
  2001年   8篇
  2000年   8篇
  1999年   8篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   3篇
  1991年   5篇
  1990年   4篇
  1989年   3篇
  1988年   5篇
  1986年   3篇
  1985年   3篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1979年   2篇
  1977年   1篇
  1976年   3篇
  1975年   3篇
  1974年   3篇
  1973年   2篇
  1972年   1篇
  1971年   2篇
  1970年   2篇
  1968年   1篇
  1967年   2篇
排序方式: 共有240条查询结果,搜索用时 31 毫秒
1.
2.
All the patients hospitalised at Besan?on Hospital between October 2000 and December 2000 were included in a prospective study in order to determine the incidence of bloodstream infections caused by coagulase-negative staphylococci (CNS), the prevalence of decreased susceptibility to glycopeptides and the molecular epidemiology of these pathogens. CNS isolates from bloodstream infections were collected and characterised by analysis of antibiotic susceptibility and restriction fragment length polymorphism using pulsed field gel electrophoresis. Forty-five episodes of CNS bacteremia occurred in 43 patients. The crude incidence of infected patients was 0,51 per 1,000 days of hospitalisation. These 45 bacteremia represented 23.3% of the total number of bacteraemia. Forty three of 45 bacteremia were studied, 36 were positive with a single PFGE pattern, 5 bacteraemias with 2 PFGE patterns, and 2 bacteraemias with 3 PFGE patterns. We identified 52 distinct PFGE patterns and 42 major PFGE patterns (35 were isolated in a single patient, 5 in 2 patients and 2 in 3 patients). The dendrogram generated showed deep but limited branching, each large branch corresponding to a species. Of these CNS isolates, 28.8% and 25.0% showed decreased susceptibility to teicoplanin, with the reference method and E-test respectively. The 16 strains belonging to multiple PFGE patterns were not more resistant to teicoplanin. Clonal dissemination did not seem to play a major role in the spread of glycopeptides resistance among CNS.  相似文献   
3.
4.
Effect of brain and spinal cord injuries on motor imagery   总被引:1,自引:0,他引:1  
Summary The timing of mentally executed movements was measured in ten patients with hemiplegia, tetraplegia and paraplegia. In hemiplegic patients a significant difference in mental duration times was found between the paralysed and the normal represented limb. The paralysed limb was mentally much slower than the healthy one. In contrast, movement times in tetraplegic and paraplegic patients did not differ from those in normal subjects. All patients reported a sensation of subjective effort accompanying the execution of the mental tasks. These observations are compatible with an outflow processing underlying motor imagery.  相似文献   
5.
The 677cytosine mutation identified in the 5,10-methylenetetrahydrofolate reductase (MTHFR) gene has been frequently associated with an elevated plasma homocysteine concentration. The aim of the present study was to determine the impact of this MTHFR common mutation on plasma and erythrocyte folate (RCF) and plasma total homocysteine (tHcy) concentrations in healthy French adults. A cohort of 291 subjects living in the Paris area and participating in the Supplementation en Vitamines et Mineraux Antioxydants (SU.VI.MAX) study were analysed to assess the impact of MTHFR polymorphism 677C-->T on folate status and plasma tHcy concentration. The frequency of the mutant homozygote for 677C-->T polymorphism (677TT genotype) in the present cohort was 16.8%. There were significant differences in plasma tHcy between 677CC, 677CT and 677TT genotype groups. The RCF concentrations were significantly different between each genotype, the lowest levels being associated with the 677TT genotype. When segregated by gender, no differences in tHcy between homozygous 677TT, heterozygous 677CT and wild-type 677CC genotype groups in women were observed. The fasting tHcy in women was unrelated to the 677C-->T mutation. However, tHcy was significantly increased in men with the homozygous 677TT genotype. We also analysed the possible implication of a second new MTHFR polymorphism (1298A-->C) in subjects with mild hyperhomocysteinaemia (4th quartile of homocysteinaemia; tHcy >11.1 micromol/l). The polymorphism 1298A-->C did not have a notable effect on tHcy or on the RCF levels. Our observations confirm a relatively high frequency of the 677TT genotype in the French population. Women with this genotype did not show the same increase in tHcy observed in men. In the present study dietary folate intake was not measured. Thus, the interaction of dietary folate with the MTHFR genotype in the French population needs further study.  相似文献   
6.
7.
Chronic mucocutaneous candidiasis (CMC) is characterized by recurrent or persistent infections of the skin, nail, oral, and genital mucosae with Candida species, mainly C. albicans. Autosomal-recessive (AR) IL-17RA and ACT1 deficiencies and autosomal-dominant IL-17F deficiency, each reported in a single kindred, underlie CMC in otherwise healthy patients. We report three patients from unrelated kindreds, aged 8, 12, and 37 yr with isolated CMC, who display AR IL-17RC deficiency. The patients are homozygous for different nonsense alleles that prevent the expression of IL-17RC on the cell surface. The defect is complete, abolishing cellular responses to IL-17A and IL-17F homo- and heterodimers. However, in contrast to what is observed for the IL-17RA– and ACT1-deficient patients tested, the response to IL-17E (IL-25) is maintained in these IL-17RC–deficient patients. These experiments of nature indicate that human IL-17RC is essential for mucocutaneous immunity to C. albicans but is otherwise largely redundant.In humans, chronic mucocutaneous candidiasis (CMC) is characterized by infections of the skin, nail, digestive, and genital mucosae with Candida species, mainly C. albicans, a commensal of the gastrointestinal tract in healthy individuals (Puel et al., 2012). CMC is frequent in acquired or inherited disorders involving profound T cell defects (Puel et al., 2010b; Vinh, 2011; Lionakis, 2012). Human IL-17 immunity has recently been shown to be essential for mucocutaneous protection against C. albicans (Puel et al., 2010b, 2012; Cypowyj et al., 2012; Engelhardt and Grimbacher, 2012; Huppler et al., 2012; Ling and Puel, 2014). Indeed, patients with primary immunodeficiencies and syndromic CMC have been shown to display impaired IL-17 immunity (Puel et al., 2010b). Most patients with autosomal-dominant (AD) hyper-IgE syndrome (AD-HIES) and STAT3 deficiency (de Beaucoudrey et al., 2008; Ma et al., 2008; Milner et al., 2008; Renner et al., 2008; Chandesris et al., 2012) and some patients with invasive fungal infection and autosomal-recessive (AR) CARD9 deficiency (Glocker et al., 2009; Lanternier et al., 2013) or Mendelian susceptibility to mycobacterial diseases (MSMD) and AR IL-12p40 or IL-12Rβ1 deficiency (de Beaucoudrey et al., 2008, 2010; Prando et al., 2013; Ouederni et al., 2014) have low proportions of IL-17A–producing T cells and CMC (Cypowyj et al., 2012; Puel et al., 2012). Patients with AR autoimmune polyendocrine syndrome type 1 (APS-1) and AIRE deficiency display CMC and high levels of neutralizing autoantibodies against IL-17A, IL-17F, and/or IL-22 (Browne and Holland, 2010; Husebye and Anderson, 2010; Kisand et al., 2010, 2011; Puel et al., 2010a).These findings paved the way for the discovery of the first genetic etiologies of CMC disease (CMCD), an inherited condition affecting individuals with none of the aforementioned primary immunodeficiencies (Puel et al., 2011; Casanova and Abel, 2013; Casanova et al., 2013, 2014). AR IL-17RA deficiency, AR ACT1 deficiency, and AD IL-17F deficiency were described, each in a single kindred (Puel et al., 2011; Boisson et al., 2013). A fourth genetic etiology of CMCD, which currently appears to be the most frequent, has also been reported: heterozygous gain-of-function (GOF) mutations of STAT1 impairing the development of IL-17–producing T cells (Liu et al., 2011; Smeekens et al., 2011; van de Veerdonk et al., 2011; Hori et al., 2012; Takezaki et al., 2012; Tóth et al., 2012; Al Rushood et al., 2013; Aldave et al., 2013; Romberg et al., 2013; Sampaio et al., 2013; Soltész et al., 2013; Uzel et al., 2013; Wildbaum et al., 2013; Frans et al., 2014; Kilic et al., 2014; Lee et al., 2014; Mekki et al., 2014; Mizoguchi et al., 2014; Sharfe et al., 2014; Yamazaki et al., 2014). We studied three unrelated patients with CMCD without mutations of IL17F, IL17RA, ACT1, or STAT1. We used a genome-wide approach based on whole-exome sequencing (WES). We found AR complete IL-17RC deficiency in all three patients.  相似文献   
8.
Genetic variants underlying life-threatening diseases, being unlikely to be transmitted to the next generation, are gradually and selectively eliminated from the population through negative selection. We study the determinants of this evolutionary process in human genes underlying monogenic diseases by comparing various negative selection scores and an integrative approach, CoNeS, at 366 loci underlying inborn errors of immunity (IEI). We find that genes underlying autosomal dominant (AD) or X-linked IEI have stronger negative selection scores than those underlying autosomal recessive (AR) IEI, whose scores are not different from those of genes not known to be disease causing. Nevertheless, genes underlying AR IEI that are lethal before reproductive maturity with complete penetrance have stronger negative selection scores than other genes underlying AR IEI. We also show that genes underlying AD IEI by loss of function have stronger negative selection scores than genes underlying AD IEI by gain of function, while genes underlying AD IEI by haploinsufficiency are under stronger negative selection than other genes underlying AD IEI. These results are replicated in 1,140 genes underlying inborn errors of neurodevelopment. Finally, we propose a supervised classifier, SCoNeS, which predicts better than state-of-the-art approaches whether a gene is more likely to underlie an AD or AR disease. The clinical outcomes of monogenic inborn errors, together with their mode and mechanisms of inheritance, determine the levels of negative selection at their corresponding loci. Integrating scores of negative selection may facilitate the prioritization of candidate genes and variants in patients suspected to carry an inborn error.

Negative (or purifying) selection is the natural process by which deleterious alleles are selectively purged from the population (1). In diploid species, the strength of negative selection at a given locus is predicted to increase with decreasing fitness and increasing dominance of the genetic variants controlling traits: Variation causing early death in the heterozygous state are the least likely to be transmitted to the next generation, as their carriers have fewer offspring than noncarriers (2). Human genetic variants that cause severe diseases are, thus, expected to be the primary targets of negative selection, particularly for diseases affecting heterozygous individuals. In humans, several studies have ranked protein-coding genes according to their levels of negative selection (35). Nevertheless, the extent to which negative selection affects human disease-causing genes, and the factors determining its strength, remain largely unknown, particularly because our knowledge of the severity, mode, and mechanism of inheritance of the corresponding human diseases remains incomplete (3, 68).The strength of negative selection at a given gene has been traditionally approximated by comparing the coding sequence of the gene in a given species with that of one or several closely related species; it depends on the proportion of amino acid changes that have accumulated during evolution (911). With the advent of high-throughput sequencing, intraspecies metrics have been developed, based on the comparison of the probability of predicted loss-of-function (pLOF) mutations for a gene under a random model with the frequency of pLOF mutations observed in population databases (5, 12, 13), which capture the species-specific evolution of genes. Using an interspecies-based method and a hand-curated version of the Online Mendelian Inheritance in Man (hOMIM) database, a previous study elegantly showed that most human genes for which mutations cause highly penetrant diseases, including autosomal dominant (AD) diseases in particular, evolve under stronger negative selection than genes associated with complex disorders (6). However, other studies based on OMIM genes have reported conflicting results (3, 1417), probably due to the incompleteness and heterogeneity of the datasets used. Moreover, no study has yet addressed this problem with intraspecies metrics, even though it has been suggested that the choice of the reference species for interspecies metrics contributes to discrepancies across studies (6).We aimed to improve the identification of the drivers of negative selection acting on human disease-causing genes, by developing a negative selection score combining several informative intraspecies and interspecies statistics, focusing on inborn errors of immunity (IEI). IEI, previously known as primary immunodeficiencies (18), are genetic diseases that disrupt the development or function of human immunity. They form a large and expanding group of genetic diseases that has been widely studied, and they are well characterized physiologically (immunologically) and phenotypically (clinically) (1921). IEI are often symptomatic in early childhood, and at least until the turn of the 20th century and the introduction of antibiotics, most individuals with IEI probably died before reaching reproductive maturity. Accordingly, IEI genes have probably been under strong negative selection from the dawn of humankind until very recently. In this study, we investigated whether the severity of IEI and their mode and mechanism of inheritance have left signatures of negative selection of various intensities in the corresponding human genes. Furthermore, we validated our model on genes underlying inborn errors of neurodevelopment (IEND), another group of well-characterized severe genetic diseases.  相似文献   
9.
A study is carried out in order to better understand the kinetic behavior of two different metallocene precursors supported on an activating silica support, and, in particular, to attempt to reduce the significance of catalyst deactivation through the use of different alkylating agents. It is observed that it is difficult to prevent the deactivation of the rac‐EtInd2ZrCl2 sites on the activating support, and, furthermore, the deactivation is accompanied by the disa­ppearance of sites producing the highest‐molecular‐weight polymer. On the contrary, with the (nBuCp)2ZrCl2 precursor, it is possible to manipulate the addition of either tri‐isobutylaluminum (TIBA) or triethylaluminum (TEA) to significantly reduce the deactivation of the catalyst on the activating supports. Finally, the molecular‐weight distribution seems to depend much more on the intrinsic properties of the active sites than on how the active sites are treated.

  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号