首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   4篇
  国内免费   1篇
儿科学   1篇
基础医学   7篇
口腔科学   1篇
临床医学   7篇
内科学   14篇
神经病学   2篇
特种医学   23篇
外科学   3篇
预防医学   1篇
药学   1篇
肿瘤学   7篇
  2022年   7篇
  2021年   7篇
  2020年   2篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2015年   2篇
  2014年   3篇
  2013年   4篇
  2012年   7篇
  2011年   3篇
  2010年   3篇
  2009年   1篇
  2008年   6篇
  2007年   2篇
  2006年   3篇
  2005年   3篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2001年   2篇
  2000年   2篇
排序方式: 共有67条查询结果,搜索用时 15 毫秒
1.
Magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU, or MRgFUS) is a hybrid technology that was developed to provide efficient and tolerable thermal ablation of targeted tumors or other pathologic tissues, while preserving the normal surrounding structures. Fast 3-D ablation strategies are feasible with the newly available phased-array HIFU transducers. However, unlike fixed heating sources for interstitial ablation (radiofrequency electrode, microwave applicator, infra-red laser applicator), HIFU uses propagating waves. Therefore, the main challenge is to avoid thermo-acoustical adverse effects, such as energy deposition at reflecting interfaces and thermal drift of the focal lesion toward the near field. We report here our investigations on some novel experimental solutions to solve, or at least to alleviate, these generally known tolerability problems in HIFU-based therapy. Online multiplanar MR thermometry was the main investigational tool extensively used in this study to identify the problems and to assess the efficacy of the tested solutions. We present an improved method to cancel the beam reflection at the exit window (i.e., tissue-to-air interface) by creating a multilayer protection, to dissipate the residual HIFU beam by bulk scattering. This study evaluates selective de-activation of transducer elements to reduce the collateral heating at bone surfaces in the far field, mainly during automatically controlled volumetric ablation. We also explore, using hybrid US/MR simultaneous imaging, the feasibility of using disruptive boiling at the focus, both as a far-field self-shielding technique and as an enhanced ablation strategy (i.e., boiling core controlled HIFU ablation).  相似文献   
2.
3.
4.
5.
We investigated a technique based on phase-contrast cine MRI combined with deconvolution of the phase shift waveforms to measure rapidly varying pulsatile motion waveforms. The technique does not require steady-state displacement during motion encoding. Simulations and experiments were performed in porcine liver samples in view of a specific application, namely the observation of transient displacements induced by acoustic radiation force. Simulations illustrate the advantages and shortcomings of the methods. For experimental validation, the waveforms were acquired with an ultrafast ultrasound scanner (Supersonic Imagine Aixplorer), and the rates of decay of the waveforms (relaxation time) were compared. With bipolar motion-encoding gradient of 8.4 ms, the method was able to measure displacement waveforms with a temporal resolution of 1 ms over a time course of 40 ms. Reasonable agreement was found between the rate of decay of the waveforms measured in ultrasound (2.8 ms) and in MRI (2.7-3.3 ms).  相似文献   
6.
Air bubble artifacts on SWI post-mortem MRI studies may interfere with the detection of cerebral microbleeds. We investigated whether the utilization of a higher receiver bandwidth of 500 Hz/pixel could reduce cortical air bubble artifacts without compromising the detection of cerebral microbleeds in high-field MRI. All microbleeds remained clearly visible whereas a reduction of 17% of the long axis of the “halo” magnitude artifacts was achieved. On corresponding phase images, air bubble artifacts appeared identical.  相似文献   
7.
8.

Objectives

To evaluate the feasibility and effectiveness of magnetic resonance (MR)-guided radiofrequency (RF) ablation for small liver tumours with poor conspicuity on both contrast-enhanced ultrasonography (US) and computed tomography (CT), using fast navigation and temperature monitoring.

Methods

Sixteen malignant liver nodules (long-axis diameter, 0.6–2.4 cm) were treated with multipolar RF ablation on a 1.5-T wide-bore MR system in ten patients. Targeting was performed interactively, using a fast steady-state free precession sequence. Real-time MR-based temperature mapping was performed, using gradient echo–echo planar imaging (GRE-EPI) and hardware filtering. MR-specific treatment data were recorded. The mean follow-up time was 19?±?7 months.

Results

Correct placement of RF electrodes was obtained in all procedures (image update, <500 ms; mean targeting time, 21?±?11 min). MR thermometry was available for 14 of 16 nodules (88%) with an accuracy of 1.6°C in a non-heated region. No correlation was found between the size of the lethal thermal dose and the ablation zone at follow-up imaging. The primary and secondary effectiveness rates were 100% and 91%, respectively.

Conclusions

RF ablation of small liver tumours can be planned, targeted, monitored and controlled with MR imaging within acceptable procedure times. Temperature mapping is technically feasible, but the clinical benefit remains to be proven.  相似文献   
9.
10.
Extracorporeal high-intensity focused ultrasound (HIFU) is a minimally invasive therapy considered with increased interest for the ablation of small tumors in deeply located organs while sparing surrounding critical tissues. A multitude of preclinical and clinical studies have showed the feasibility of the method; however, concurrently they showed several obstacles, among which the management of respiratory motion of abdominal organs is at the forefront. The aim of this review is to describe the different methods that have been proposed for managing respiratory motion and to identify their advantages and weaknesses. First, we specify the characteristics of respiratory motion for the liver, kidneys, and pancreas and the problems it causes during HIFU planning, treatment, and monitoring. Second, we make an inventory of the preclinical and clinical approaches used to overcome the problem of organ motion. Third, we analyze their respective benefits and drawbacks to identify the remaining physical, technological, and clinical challenges. We thereby consider the outlook of motion compensation techniques and those that would be the most suitable for clinical use, particularly under magnetic resonance thermometry monitoring.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号