首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
神经病学   2篇
  2009年   2篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
o.  goetze  r.  treier †  m.  fox    a.  steingoetter †  §  m.  fried    p.  boesiger †  ‡ & w.  schwizer   《Neurogastroenterology and motility》2009,21(7):725-e42
Abstract Conventional measurement of gastric secretion is invasive and cannot assess the intra‐gastric distribution of gastric contents or the effects of secretion on gastric function. This study assessed the effect of gastric secretion on gastric volume responses and emptying (GE) using a validated fast T1 mapping magnetic resonance imaging (MRI) technique. Twelve healthy participants were studied in the fasted state and after 200 kcal Gadolinium‐DOTA labelled glucose meal during intravenous infusion of pentagastrin or placebo in double‐blind, randomized order. Total gastric volume (TGV) and gastric content volume (GCV) was assessed by MRI volume scans and secretion by fast T1 mapping. Data was described by the κ‐coefficient (volume change after meal ingestion), by GE half time (T50) and maximal GE rate (GERmax) derived all from a GE model. Pentagastrin increased GCV and TGV compared to placebo [κ(GCV):1.6 ± 0.1 vs 0.6 ± 0.1; κ(TGV): 1.6 ± 0.1 vs 0.7 ± 0.1; P < 0.001]. T1 maps revealed a secretion layer above the meal, the volume of which was associated with κ (R2 = 83%, P < 0.001). TGV and GCV change were similar in both conditions (κ; P = ns). T50 was higher for pentagastrin than for placebo (84 ± 7 vs 56 ± 4min, P < 0.001); however, GERmax was similar (5.9 ± 0.6 vs 4.9 ± 0.4 mL min?1, P = ns). This study shows volume and distribution of gastric secretion can be quantified in‐vivo by non‐invasive MRI T1 mapping. Increased GCV drove TGV accommodation without evidence of a direct effect of pentagastrin or excess acid on gastric function. Secretion increases GCV thus prolongs GE as assessed by T50; however, GE rate is unchanged.  相似文献   
2.
o.  goetze  m.  fox    m. a.  kwiatek  r.  treier ‡  w.  schwizer    m.  thumshirn  m.  fried  † & h.  fruehauf 《Neurogastroenterology and motility》2009,21(10):1047-e85
Abstract Uniform postgastric processing of the gastric emptying (GE) marker 13C‐acetate (Ac) is an unverified assumption behind its widespread application to measure GE. This study assessed the postgastric processing of Ac administered by intraduodenal (i.d.) infusion simulating different physiological conditions. 13CO2 in breath was assessed in three groups of six volunteers after i.d. administration of A: Different caloric densities (0.75/1.5/3 kcal min?1) in a 200 mL meal at constant 1 mg Ac min?1 simulating a physiological range of nutrient delivery rates; B: different tracer delivery rates (0.5/1.0/2.5 mg Ac min?1) simulating delayed, normal and increased GE; C1: a 500 mL meal resulting in same marker and caloric delivery compared to protocol A; C2: 50 mL water bolus injections of 12.5/25/50/100 mg Ac and C3 bolus injections of 50 mg Ac in 50/100/200 mL water in randomized order. A: 13CO2 excretion was independent of caloric load (P = 0.59). B: The dynamic of 13CO2 excretion was modulated by tracer elimination which was in turn dependent on the speed of tracer delivery, i.e. with faster deliveries resulting in lower 13CO2 recovery during infusion (P < 0.001). C: Increasing Ac doses resulted in decreased 13CO2 recovery (P < 0.001) over the first hour. 13CO2 recovery kinetics was independent of the volume delivered. This study shows 13C‐acetate absorption and metabolism is independent of the volume and caloric delivery of test meals. The ‘lag’ in estimates of GE derived from 13CO2 breath tests is due to a postgastric, dose‐dependent delay to 13CO2 elimination. This can be corrected for in analytical derivations of GE parameters based on 13C‐acetate breath test measurements.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号