首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
内科学   1篇
神经病学   5篇
  2017年   1篇
  2009年   2篇
  2007年   1篇
  2005年   2篇
排序方式: 共有6条查询结果,搜索用时 171 毫秒
1
1.
2.
This investigation was conducted to establish whether guinea-pig trinitrobenzene sulfonic acid (TNBS)-colitis was associated with a change in the number of neurones of the myenteric plexus, and, if so, whether select subpopulations of neurones were affected. Total neurones were quantified with human (Hu) antiserum, and subpopulations were evaluated with antisera directed against choline acetyltransferase, nitric oxide synthase, calretinin, neuronal nuclear protein or vasoactive intestinal peptide (VIP). Colitis was associated with a loss of 20% of the myenteric neurones, most of which occurred during the first 12 h past-TNBS administration. During this period, myenteric ganglia were infiltrated with neutrophils while lymphocytes appeared at a later time-point. The neuronal loss persisted at a 56-day time-point, when inflammation had resolved. The decrease in myenteric neurones was not associated with a decrease in any given subpopulation of neurones, but the proportion of VIP-immunoreactive neurones increased 6 days following TNBS administration and returned to the control range at the 56 days. These findings indicate that there is an indiscriminant loss of myenteric neurones that occurs during the onset of TNBS-colitis, and the loss of neurones may be associated with the appearance of neutrophils in the region.  相似文献   
3.
Abstract  The effect of age on the anatomy and function of the human colon is incompletely understood. The prevalence of disorders in adults such as constipation increase with age but it is unclear if this is due to confounding factors or age-related structural defects. The aim of this study was to determine number and subtypes of enteric neurons and neuronal volumes in the human colon of different ages. Normal colon (descending and sigmoid) from 16 patients (nine male) was studied; ages 33–99. Antibodies to HuC/D, choline acetyltransferase (ChAT), neuronal nitric oxide synthase (nNOS), and protein gene product 9.5 were used. Effect of age was determined by testing for linear trends using regression analysis. In the myenteric plexus, number of Hu-positive neurons declined with age (slope = −1.3 neurons/mm/10 years, P  = 0.03). The number of ChAT-positive neurons also declined with age (slope = −1.1 neurons/mm/10 years of age, P  = 0.02). The number of nNOS-positive neurons did not decline with age. As a result, the ratio of nNOS to Hu increased (slope = 0.03 per 10 years of age, P  = 0.01). In the submucosal plexus, the number of neurons did not decline with age (slope = −0.3 neurons/mm/10 years, P  = 0.09). Volume of nerve fibres in the circular muscle and volume of neuronal structures in the myenteric plexus did not change with age. In conclusion, the number of neurons in the human colon declines with age with sparing of nNOS-positive neurons. This change was not accompanied by changes in total volume of neuronal structures suggesting compensatory changes in the remaining neurons.  相似文献   
4.
5.
6.
Persistent changes in gastrointestinal motility frequently accompany the resolution of colitis, through mechanisms that remain to be determined. Trinitrobenzene sulfonic acid (TNBS) colitis in the guinea pig decreases the rate of propulsive motility, causes hyperexcitability of AH neurons, and induces synaptic facilitation. The changes in motility and AH neurons are sensitive to cyclooxygenase-2 (COX-2) inhibition. The aim of this investigation was to determine if the motility and neurophysiological changes persist following recovery from colitis. Evaluations of inflammation, colonic motility and intracellular electrophysiology of myenteric neurons 8 weeks after TNBS administration were performed and compared to matched control conditions. Myeloperoxidase levels in the colons were comparable to control levels 56 days after TNBS treatment. At this time point, the rate of colonic motility was decreased relative to controls following treatment with TNBS alone or TNBS plus a COX-2 inhibitor. Furthermore, the electrical properties of AH neurons and fast synaptic potentials in S neurons were significantly different from controls and comparable to those detected during active inflammation. Collectively, these data suggest that altered myenteric neurophysiology initiated during active colitis persists long term, and provide a potential mechanism underlying altered gut function in individuals during remission from inflammatory bowel disease.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号