首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
神经病学   2篇
  2009年   2篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
p.  gomes    j.  chevalier ‡  §    w.  boesmans  l.  roosen  v.  van den abbeel  m.  neunlist ‡  §    j.  tack  † & p.  vanden berghe 《Neurogastroenterology and motility》2009,21(8):870-e62
Abstract  The importance of dynamic interactions between glia and neurons is increasingly recognized, both in the central and enteric nervous system. However, apart from their protective role, little is known about enteric neuro–glia interaction. The aim was to investigate neuro–glia intercellular communication in a mouse culture model using optical techniques. Complete embryonic (E13) guts were enzymatically dissociated, seeded on coverslips and studied with immunohistochemistry and Ca2+-imaging. Putative progenitor-like cells (expressing both PGP9.5 and S-100) differentiated over approximately 5 days into glia or neurons expressing typical cell-specific markers. The glia–neuron ratio could be manipulated by specific supplements (N2, G5). Neurons and glia were functionally identified both by their Ca2+-response to either depolarization (high K+) or lysophosphatidic acid and by the expression of typical markers. Neurons responded to ACh, DMPP, 5-HT, ATP and electrical stimulation, while glia responded to ATP and ADPβs. Inhibition of glial responses by MRS2179 suggests involvement of P2Y1 receptors. Neuronal stimulation also caused delayed glial responses, which were reduced by suramin and by exogenous apyrases that catalyse nucleotide breakdown. Conversely, glial responses were enhanced by ARL-67156, an ecto-ATPase inhibitor. In this mouse enteric co-culture, functional glia and neurons can be easily monitored using optical techniques. Glial cells can be activated directly by ATP or ADPβs. Activation of neuronal cells (DMPP, K+) causes secondary responses in glial cells, which can be modulated by tuning ATP and ADP breakdown. This strongly supports the involvement of paracrine purinergic communication between enteric neurons and glia.  相似文献   
2.
Abstract Cannabinoid (CB) receptors are expressed in the enteric nervous system (ENS) and CB1 receptor activity slows down motility and delays gastric emptying. This receptor system has become an important target for GI‐related drug development such as in obesity treatment. The aim of the study was to investigate how CB1 ligands and antagonists affect ongoing activity in enteric neurone networks, modulate synaptic vesicle cycling and influence mitochondrial transport in nerve processes. Primary cultures of guinea‐pig myenteric neurones were loaded with different fluorescent markers: Fluo‐4 to measure network activity, FM1‐43 to image synaptic vesicles and Mitotracker green to label mitochondria. Synaptic vesicle cluster density was assessed by immunohistochemistry and expression of CB1 receptors was confirmed by RT‐PCR. Spontaneous network activity, displayed by both excitatory and inhibitory neurones, was significantly increased by CB1 receptor antagonists (AM‐251 and SR141716), abolished by CB1 activation (methanandamide, mAEA) and reduced by two different inhibitors (arachidonylamide serotonin, AA‐5HT and URB597) of fatty acid amide hydrolase. Antagonists reduced the number of synaptic vesicles that were recycled during an electrical stimulus. CB1 agonists (mAEA and WIN55,212) reduced and antagonists enhanced the fraction of transported mitochondria in enteric nerve fibres. We found immunohistochemical evidence for an enhancement of synaptophysin‐positive release sites with SR141716, while WIN55,212 caused a reduction. The opposite effects of agonists and antagonists suggest that enteric nerve signalling is under the permanent control of CB1 receptor activity. Using inhibitors of the endocannabinoid degrading enzyme, we were able to show there is endogenous production of a CB ligand in the ENS.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号