首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80篇
  免费   0篇
儿科学   1篇
基础医学   10篇
临床医学   1篇
内科学   1篇
神经病学   43篇
特种医学   3篇
外科学   15篇
预防医学   1篇
药学   3篇
肿瘤学   2篇
  2023年   1篇
  2022年   4篇
  2020年   2篇
  2018年   3篇
  2017年   3篇
  2016年   1篇
  2015年   4篇
  2014年   1篇
  2013年   3篇
  2012年   4篇
  2011年   8篇
  2010年   6篇
  2009年   1篇
  2008年   6篇
  2007年   5篇
  2006年   14篇
  2005年   4篇
  2004年   7篇
  2003年   3篇
排序方式: 共有80条查询结果,搜索用时 15 毫秒
1.
Summary Objective. To report our experience on hardware-related infections following deep brain stimulation (DBS).Methods. The present article presents the retrospective clinical notes review of gained in a two-centre, single-surgeon study experience of 108 consecutive DBS cases between 1996 and 2002. In all patients the minimum follow-up was six months. One hundred and eight patients received an intracerebral electrode implantation and 106 underwent internalization.Results. In total 178 electrodes were implanted with a mean follow-up of 42.6 months and a cumulative follow-up of 367.7 patient-years. Four patients (3.8%) developed an infection related to the DBS-hardware and all were initially treated with antibiotics. Two patients eventually required additional surgical treatment.Conclusion. Infections due to DBS-hardware can result in considerable levels of morbidity. In certain cases antibiotic therapy may be adequate. In others, surgical intervention to externalise the electrodes may be necessary. In our experience, there was never a need to remove the electrodes.  相似文献   
2.
3.
Bilateral, high-frequency stimulation (HFS) of the subthalamic nucleus (STN) is the surgical therapy of choice for movement disability in advanced Parkinson's disease (PD), but this procedure evokes debilitating psychiatric effects, including depressed mood, of unknown neural origin. Here, we report the unexpected finding that HFS of the STN inhibits midbrain 5-hydroxytryptamine (5-HT) neurons to evoke depression-related behavioral changes. We found that bilateral HFS of the STN consistently inhibited (40-50%) the firing rate of 5-HT neurons in the dorsal raphe nucleus of the rat, but not neighboring non-5-HT neurons. This effect was apparent at clinically relevant stimulation parameters (> or =100 Hz, > or =30 microA), was not elicited by HFS of either neighboring or remote structures to the STN, and was still present in rat models of PD. We also found that bilateral HFS of the STN evoked clear-cut, depressive-like behavior in a widely used experimental paradigm of depression (forced swim test), and this effect was also observed in a PD model. Importantly, the depressive-like behavior elicited by HFS of the STN was reversed by a selective 5-HT-enhancing antidepressant, thereby linking the behavioral change to decreased 5-HT neuronal activity. Overall, these findings link reduced 5-HT function to the psychiatric effects of HFS of the STN observed in PD patients and provide a rational basis for their clinical management. More generally, the powerful interaction between the STN and 5-HT system uncovered here offers insights into the high level of comorbidity of basal ganglia disease and mood disorder.  相似文献   
4.
The nucleus accumbens is gaining interest as a target for deep brain stimulation in refractory neuropsychiatric disorders with impulsivity as core symptom. The nucleus accumbens is composed of two subterritories, core and shell, which have different anatomical connections. Here, we tested the hypothesis that stimulation of the nucleus accumbens core and shell would have different effects on impulsivity. Rats received bilateral stimulation at the level of the nucleus accumbens core or shell during a reaction time task. Stimulation of the nucleus accumbens core significantly decreased impulsivity, while stimulation of the shell increased it. Our results support the hypothesis that the nucleus accumbens is a potential target to treat neuropsychiatric disorders related to impulsivity by deep brain stimulation. However, different behavioral effects resulting from stimulation of the subterritories should be taken into account.  相似文献   
5.
Surgery in Tourette syndrome.   总被引:4,自引:0,他引:4  
  相似文献   
6.
The use of stimulation electrodes implanted in the brain to control severely disabling neurological and psychiatric conditions is an exciting and fast emerging area of neuroscience. An excellent example is Parkinson's disease (PD), in which tens of thousands of patients have now been implanted with stimulation electrodes. Patients with PD underwent deep brain stimulation (DBS) at the level of the thalamus, globus pallidus internus, subthalamic nucleus, pedunculopontine nucleus and prelemniscal radiation. The results of these interventions revealed that each target has its own specific stimulation-related positive and negative effects. Clinicians can choose their DBS target based on the situation of their individual PD patients. In the authors' opinion, patient-specific targeting should be preferred over disease-specific targeting. In this review, the authors give an overview of the targets that have been used for DBS in PD and discuss patient-specific targeting.  相似文献   
7.
High frequency stimulation (HFS) of the subthalamic nucleus (STN) is the neurosurgical therapy of choice for the management of motor deficits in patients with advanced Parkinson’s disease, but this treatment can elicit disabling mood changes. Our recent experiments show that in rats, HFS of the STN both inhibits the firing of 5-HT (5-hydroxytryptamine; serotonin) neurons in the dorsal raphe nucleus (DRN) and elicits 5-HT-dependent behavioral effects. The neural circuitry underpinning these effects is unknown. Here we investigated in the dopamine-denervated rat the effect of bilateral HFS of the STN on markers of neuronal activity in the DRN as well as DRN input regions. Controls were sham-stimulated rats. HFS of the STN elicited changes in two 5-HT-sensitive behavioral tests. Specifically, HFS increased immobility in the forced swim test and increased interaction in a social interaction task. HFS of the STN at the same stimulation parameters, increased c-fos immunoreactivity in the DRN, and decreased cytochrome C oxidase activity in this region. The increase in c-fos immunoreactivity occurred in DRN neurons immunopositive for the GABA marker parvalbumin. HFS of the STN also increased the number of c-fos immunoreactive cells in the lateral habenula nucleus, medial prefrontal cortex but not significantly in the substantia nigra. Collectively, these findings support a role for circuitry involving DRN GABA neurons, as well as DRN afferents from the lateral habenula nucleus and medial prefrontal cortex, in the mood effects of HFS of the STN.  相似文献   
8.
The authors reviewed 70 publications on MR imaging-based targeting techniques for identifying the subthalamic nucleus (STN) for deep brain stimulation in patients with Parkinson disease. Of these 70 publications, 33 presented quantitatively validated results. There is still no consensus on which targeting technique to use for surgery planning; methods vary greatly between centers. Some groups apply indirect methods involving anatomical landmarks, or atlases incorporating anatomical or functional data. Others perform direct visualization on MR imaging, using T2-weighted spin echo or inversion recovery protocols. The combined studies do not offer a straightforward conclusion on the best targeting protocol. Indirect methods are not patient specific, leading to varying results between cases. On the other hand, direct targeting on MR imaging suffers from lack of contrast within the subthalamic region, resulting in a poor delineation of the STN. These deficiencies result in a need for intraoperative adaptation of the original target based on test stimulation with or without microelectrode recording. It is expected that future advances in MR imaging technology will lead to improvements in direct targeting. The use of new MR imaging modalities such as diffusion MR imaging might even lead to the specific identification of the different functional parts of the STN, such as the dorsolateral sensorimotor part, the target for deep brain stimulation.  相似文献   
9.

Background

Data on paediatric deep brain stimulation (DBS) is limited, especially for long-term outcomes, because of small numbers in single center series and lack of systematic multi-center trials.

Objectives

We seek to systematically evaluate the clinical outcome of paediatric patients undergoing DBS.

Methods

A German registry on paediatric DBS (GEPESTIM) was created to collect data of patients with dystonia undergoing DBS up to the age of 18 years. Patients were divided into three groups according to etiology (group 1 inherited, group 2 acquired, and group 3 idiopathic dystonia).

Results

Data of 44 patients with a mean age of 12.8 years at time of operation provided by 6 German centers could be documented in the registry so far (group 1 n = 18, group 2 n = 16, group 3 n = 10). Average absolute improvement after implantation was 15.5 ± 18.0 for 27 patients with pre- and postoperative Burke-Fahn-Marsden Dystonia Rating scale movement scores available (p < 0.001) (group 1: 19.6 ± 19.7, n = 12; group 2: 7.0 ± 8.9, n = 8; group 3: 19.2 ± 20.7, n = 7). Infection was the main reason for hardware removal (n = 6). 20 IPG replacements due to battery expiry were necessary in 15 patients at 3.7 ± 1.8 years after last implantation.

Discussion

Pre- and postoperative data on paediatric DBS are very heterogeneous and incomplete but corroborate the positive effects of DBS on inherited and acquired dystonia. Adverse events including relatively frequent IPG replacements due to battery expiry seem to be a prominent feature of children with dystonia undergoing DBS. The registry enables collaborative research on DBS treatment in the paediatric population and to create standardized management algorithms in the future.  相似文献   
10.

Background

Subthalamic nucleus (STN) deep brain stimulation (DBS) improves quality of life (QoL), motor, and non-motor symptoms (NMS) in Parkinson's disease (PD). Few studies have investigated the influence of the location of neurostimulation on NMS.

Objective

To investigate the impact of active contact location on NMS in STN-DBS in PD.

Methods

In this prospective, open-label, multicenter study including 50 PD patients undergoing bilateral STN-DBS, we collected NMSScale (NMSS), NMSQuestionnaire (NMSQ), Hospital Anxiety and Depression Scale (anxiety/depression, HADS-A/-D), PDQuestionnaire-8 (PDQ-8), Scales for Outcomes in PD-motor examination, motor complications, activities of daily living (ADL), and levodopa equivalent daily dose (LEDD) preoperatively and at 6 months follow-up. Changes were analyzed with Wilcoxon signed-rank/t-test and Bonferroni-correction for multiple comparisons. Although the STN was targeted visually, we employed an atlas-based approach to explore the relationship between active contact locations and DBS outcomes. Based on fused MRI/CT-images, we identified Cartesian coordinates of active contacts with patient-specific Mai-atlas standardization. We computed linear mixed-effects models with x-/y-/z-coordinates as independent, hemispheres as within-subject, and test change scores as dependent variables.

Results

NMSS, NMSQ, PDQ-8, motor examination, complications, and LEDD significantly improved at follow-up. Linear mixed-effect models showed that NMS and QoL improvement significantly depended on more medial (HADS-D, NMSS), anterior (HADS-D, NMSQ, PDQ-8), and ventral (HADS-A/-D, NMSS, PDQ-8) neurostimulation. ADL improved more in posterior, LEDD in lateral neurostimulation locations. No relationship was observed for motor examination and complications scores.

Conclusions

Our study provides evidence that more anterior, medial, and ventral STN-DBS is significantly related to more beneficial non-motor outcomes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号