首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   4篇
儿科学   2篇
妇产科学   2篇
基础医学   9篇
临床医学   1篇
内科学   2篇
神经病学   2篇
特种医学   3篇
外科学   4篇
综合类   1篇
预防医学   2篇
药学   2篇
肿瘤学   1篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   4篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
  2012年   4篇
  2010年   2篇
  2009年   3篇
  2008年   1篇
  2007年   2篇
  2005年   1篇
  2004年   2篇
  1992年   1篇
  1971年   1篇
排序方式: 共有31条查询结果,搜索用时 289 毫秒
1.
The long-term biostability of a novel thermoplastic polyurethane elastomer (Elast-Eon 2 80A) synthesized using poly(hexamethylene oxide) (PHMO) and poly(dimethylsiloxane) (PDMS) macrodiols has been studied using an in vivo ovine model. The material's biostability was compared with that of three commercially available control materials, Pellethane 2363-80A, Pellethane 2363-55D and Bionate 55D, after subcutaneous implantation of strained compression moulded flat sheet dumbbells in sheep for periods ranging from 3 to 24 months. Scanning electron microscopy, attenuated total reflectance-Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy were used to assess changes in the surface chemical structure and morphology of the materials. Gel permeation chromatography, differential scanning calorimetry and tensile testing were used to examine changes in bulk characteristics of the materials. The results showed that the biostability of the soft flexible PDMS-based test polyurethane was significantly better than the control material of similar softness, Pellethane 80A, and as good as or better than both of the harder commercially available negative control polyurethanes, Pellethane 55D and Bionate 55D. Changes observed in the surface of the Pellethane materials were consistent with oxidation of the aliphatic polyether soft segment and hydrolysis of the urethane bonds joining hard to soft segment with degradation in Pellethane 80A significantly more severe than that observed in Pellethane 55D. Very minor changes were seen on the surfaces of the Elast-Eon 2 80A and Bionate 55D materials. There was a general trend of molecular weight decreasing with time across all polymers and the molecular weights of all materials decreased at a similar relative rate. The polydispersity ratio, Mw/Mn, increased with time for all materials. Tensile tests indicated that UTS increased in Elast-Eon 2 80A and Bionate 55D following implantation under strained conditions. However, ultimate strain decreased and elastic modulus increased in the explanted specimens of all three materials when compared with their unimplanted unstrained counterparts. The results indicate that a soft, flexible PDMS-based polyurethane synthesized using 20% PHMO and 80% PDMS macrodiols has excellent long-term biostability compared with commercially available polyurethanes.  相似文献   
2.
3.
Biodegradable natural polymers and macromolecules for transient electronics have great potential to reduce the environmental footprint and provide opportunities to create emerging and environmentally sustainable technologies. Creating complex electronic devices from biodegradable materials requires exploring their chemical design pathways to use them as substrates, dielectric insulators, conductors, and semiconductors. While most research exploration has been conducted using natural polymers as substrates for electronic devices, a very few natural polymers have been explored as dielectric insulators, but they possess high dielectric constants. Herein, for the first time, we have demonstrated a natural polyphenol-based nanomaterial, derived from tannic acid as a low-κ dielectric material by introducing a highly nanoporous framework with a silsesquioxane core structure. Utilizing natural tannic acid, porous “raspberry-like” nanoparticles (TA-NPs) are prepared by a sol–gel polymerization method, starting from reactive silane unit-functionalized tannic acid. Particle composition, thermal stability, porosity distribution, and morphology are analyzed, confirming the mesoporous nature of the nanoparticles with an average pore diameter ranging from 19 to 23 nm, pore volume of 0.032 cm3 g−1 and thermal stability up to 350 °C. The dielectric properties of the TA-NPs, silane functionalized tannic acid precursor, and tannic acid are evaluated and compared by fabricating thin film capacitors under ambient conditions. The dielectric constants (κ) are found to be 2.98, 2.84, and 2.69 (±0.02) for tannic acid, tannic acid-silane, and TA-NPs, respectively. The unique chemical design approach developed in this work provides us with a path to create low-κ biodegradable nanomaterials from natural polyphenols by weakening their polarizability and introducing high mesoporosity into the structure.

The first study on biodegradable low-κ dielectric nanomaterials with a silsesquioxane framework is demonstrated utilizing a natural polyphenol, tannic acid.  相似文献   
4.
We previously reported that transplantation (Tx) of prevascularized donor islets as composite islet‐kidneys (IK) reversed diabetic hyperglycemia in both miniature swine and baboons. In order to enhance this strategy's potential clinical applicability, we have now combined this approach with hematopoietic stem cell (HSC) Tx in an attempt to induce tolerance in nonhuman primates. IKs were prepared by isolating islets from 70% partial pancreatectomies and injecting them beneath the autologous renal capsule of five rhesus monkey donors at least 3 months before allogeneic IK Tx. HSC Tx was performed after mobilization and leukapheresis of the donors and conditioning of the recipients with total body irradiation, T cell depletion, and cyclosporine. One IK was harvested for histologic analysis and four were transplanted into diabetic recipients. IK Tx was performed either 20–22 (n = 3) or 208 (n = 1) days after HSC Tx. All animals accepted IKs without rejection. All recipients required >20 U/day insulin before IK Tx to maintain <200 mg/dL, whereas after IK Tx, three animals required minimal doses of insulin (1–3 U/day) and one animal was insulin free. These results constitute a proof‐of‐principle that this IK tolerance strategy may provide a cure for both end‐stage renal disease and diabetes without the need for immunosuppression.  相似文献   
5.
The potential pathogenicity of two homoplasmic mtDNA point mutations, 9035T>C and 4452T>C, found in a family afflicted with maternally transmitted cognitive developmental delay, learning disability, and progressive ataxia was evaluated using transmitochondrial cybrids. We confirmed that the 4452T>C transition in tRNAMet represented a polymorphism; however, 9035T>C conversion in the ATP6 gene was responsible for a defective F0‐ATPase. Accordingly, mutant cybrids had a reduced oligomycin‐sensitive ATP hydrolyzing activity. They had less than half of the steady‐state content of ATP and nearly an 8‐fold higher basal level of reactive oxygen species (ROS). Mutant cybrids were unable to cope with additional insults, i.e., glucose deprivation or tertiary‐butyl hydroperoxide, and they succumbed to either apoptotic or necrotic cell death. Both of these outcomes were prevented by the antioxidants CoQ10 and vitamin E, suggesting that the abnormally high levels of ROS were the triggers of cell death. In conclusion, the principal metabolic defects, i.e., energy deficiency and ROS burden, resulted from the 9035T>C mutation and could be responsible for the development of clinical symptoms in this family. Furthermore, antioxidant therapy might prove helpful in the management of this disease. Muscle Nerve, 2009  相似文献   
6.
The advent of injectable polymer technologies has increased the prospect of developing novel, minimally invasive arthroscopic techniques to treat a wide variety of ailments. In this study, we have synthesised and evaluated a novel polyurethane-based injectable, in situ curable, polymer platform to determine its potential uses as a tissue engineered implant. Films of the polymers were prepared by reacting two pentaerythritol-based prepolymers, and characterised for mechanical and surface properties, and cytocompatibility. This polymer platform displayed mechanical strength and elasticity superior to many injectable bone cements and grafts. Cytotoxicity tests using primary human osteoblasts, revealed positive cell viability and increased proliferation over a period of 7 days in culture. This favourable cell environment was attributed to the hydrophilic nature of the films, as assessed by dynamic contact angle (DCA) analysis of the sample surfaces. The incorporation of beta-TCP was shown to improve mechanical properties, surface wettability, and cell viability and proliferation, compared to the other sample types. SEM/EDX analysis of these surfaces also revealed physicochemical surface heterogeneity in the presence of beta-TCP. Based on preliminary mechanical analysis and cytotoxicity results, these injectable polymers may have a number or potential orthopaedic applications; ranging from bone glues to scaffolds for bone regeneration.  相似文献   
7.
Diphtheria toxin (DT)-based anti-CD3 immunotoxins have clinical relevance in numerous applications including autoimmune disease therapies and organ transplantation tolerance protocols. Pre-existing anti-DT antibodies acquired either by vaccination against diphtheria toxin or infections with C. diphtheriae may interfere or inhibit the function of these anti-CD3 immunotoxins. Previously, a full-length anti-rhesus monkey CD3 immunotoxin, FN18-CRM9, was shown to be less effective at depleting circulating T cells in animals with pre-existing anti-DT antibody titers than in animals without antibodies, and subsequent doses were ineffective. In this study, the T cell depletion function of a truncated DT based recombinant anti-monkey CD3 immunotoxin, A-dmDT390-scfbDb (C207), as part of a reduced intensity conditioning regimen prior to hematopoietic cell transplantation, was compared between two groups of monkeys: those with and without pre-existing anti-diphtheria titers. T cell depletion was comparable in both groups of monkeys, and therefore appeared to be unaffected by the presence of moderate levels of pre-existing anti-diphtheria antibodies.  相似文献   
8.
Biodegradable polyurethanes offer advantages in the design of injectable or preformed scaffolds for tissue engineering and other medical implant applications. We have developed two-part injectable prepolymer systems (prepolymer A and B) consisting of lactic acid and glycolic acid based polyester star polyols, pentaerythritol (PE) and ethyl lysine diisocyanate (ELDI). This study reports on the formulation and properties of a series of cross linked polyurethanes specifically developed for orthopaedic applications. Prepolymer A was based on PE and ELDI. Polyester polyols (prepolymer B) were based on PE and dl-lactic acid (PEDLLA) or PE and glycolic acid (PEGA) with molecular weights 456 and 453, respectively. Several cross linked porous and non-porous polyurethanes were prepared by mixing and curing prepolymers A and B and their mechanical and thermal properties, in vitro (PBS/37 degrees C/pH 7.4) and in vivo (sheep bi-lateral) degradation evaluated. The effect of incorporating beta-tricalcium phosphate (beta-TCP, 5 microns, 10 wt.%) was also investigated. The cured polymers exhibited high compressive strength (100-190 MPa) and modulus (1600-2300 MPa). beta-TCP improved mechanical properties in PEDLLA based polyurethanes and retarded the onset of in vitro and in vivo degradation. Sheep study results demonstrated that the polymers in both injectable and precured forms did not cause any surgical difficulties or any adverse tissue response. Evidence of new bone growth and the gradual degradation of the polymers were observed with increased implant time up to 6 months.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号