首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   2篇
基础医学   1篇
临床医学   1篇
皮肤病学   23篇
外科学   1篇
药学   4篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2015年   1篇
  2014年   5篇
  2013年   1篇
  2012年   5篇
  2010年   7篇
  2009年   1篇
  2008年   4篇
排序方式: 共有30条查询结果,搜索用时 15 毫秒
1.
Tissue polarimetry holds great promise to improve the effectiveness of conventional cancer diagnostics and staging, being a fast, minimally invasive, and low-cost optical technique. We introduce an enhanced diagnostic method for ex vivo colon specimens assessment by utilizing Stokes and Mueller matrix polarimetry. The proposed method makes use of experimental Mueller matrices, measured from healthy and tumor zones of a colon specimen, as input data for post-processing algorithms that include physical realisability filtering, symmetric decomposition and estimation of various polarization and depolarization metrics for colon specimen diagnostics. We validated our results with the gold standard histological diagnostics provided by pathologists. It was found that the Stokes-Mueller matrix polarimetry, combined with the appropriate filtering, decomposition algorithms and polarization/depolarization metrics calculations provides relevant optical markers of the colon tissue pathological conditions (healthy versus cancer), as confirmed by histopathology analysis. This approach potentially provides physicians with valuable and complementary information that holds promises in helping with the diagnostics of colon tissue specimens.  相似文献   
2.
Skin, being exposed directly to the environment, represents a unique model for demonstrating the synergistic effects of intrinsic and extrinsic factors on the ageing process. Ultraviolet radiation (UVR) is the major factor among exogenous stressors responsible for premature skin ageing. The problem of skin ageing has captured public attention and has an important social impact. Different therapeutic approaches have been developed to treat cutaneous ageing and to diminish or prevent the negative effects of UVR. Topical retinoids represent an important and powerful class of molecules in the dermatologist’s hands for the treatment of photodamaged skin. Since their introduction more than 20 years ago, topical retinoids have shown beneficial efficacy and good safety profiles in the management of photodamaged skin, and as therapeutic anti‐ageing agents. This review provides a brief retrospective of the development of topical retinoids in the treatment of photodamaged skin, elucidates their mechanism of action, delineates their use and addresses clinical, pharmaceutical and regulatory issues in connection with their intended use.  相似文献   
3.
The aim of the study was to disclose interactions between epidermal barrier, skin irritation and sensitization in healthy and diseased skin. Transepidermal water loss (TEWL) and stratum corneum hydration (SCH) were assessed in adult patients with atopic dermatitis (AD), rosacea and healthy controls. A 4‐h patch test with seven concentrations of sodium lauryl sulphate was performed to determine the irritant threshold (IT). Contact sensitization pattern was revealed by patch testing with European baseline series. Subjects with a lower IT had higher TEWL values and lower SCH. Subjects with positive allergic reactions had significantly lower IT. In AD, epidermal barrier deterioration was detected on both volar forearm and nasolabial fold, while in rosacea, impeded skin physiology parameters were observed on the facial skin only, suggesting that barrier impediment is restricted to the face in rosacea, in contrast with AD where the abnormal skin physiology is generalized.  相似文献   
4.
The intact skin represents a barrier to the uncontrolled loss of water, proteins, and plasma components from the organism. Owing to its complex structure, the epidermal barrier with its major layer, the stratum corneum, is the rate-limiting unit for the penetration of exogenous substances through the skin. The epidermal barrier is not a static structure. The status of different functions of the epidermis can be monitored by assessing specific biophysical parameters such as transepidermal water loss, stratum corneum hydration, and skin surface pH. Variables originating from the individual as well as exogenous factors have an important influence on the epidermal barrier parameters.  相似文献   
5.
The management and counseling of patients with pemphigus vulgaris during pregnancy is a challenge. The frequency of the association is very low and the current knowledge is based only on case reports or small series. The authors report 2 cases ofpemphigus vulgaris and pregnancy that differed from each other in the time of occurrence and clinical course but had similar favorable outcomes. Based on a literature review and their personal observations, the authors discuss the characteristics of this association, the therapeutic behavior, patients' followup, and fetal prognosis.  相似文献   
6.
Skin as an organ of protection covers the body and accomplishes multiple defensive functions. The intact skin represents a barrier to the uncontrolled loss of water, proteins, and plasma components from the organism. Due to its complex structure, the epidermal barrier with its major component, stratum corneum, is the rate-limiting unit for the penetration of exogenous substances through the skin. The epidermal barrier is not a static structure. The permeability barrier status can be modified by different external and internal factors such as climate, physical stressors, and a number of skin and systemic diseases.Today, different non-invasive approaches are used to monitor the skin barrier physical properties in vivo. The quantification of parameters such as transepidermal water loss, stratum corneum hydration, and skin surface acidity is essential for the integral evaluation of the epidermal barrier status. Novel methods such as in vivo confocal Raman microspectroscopy offer the possibility for precise and detailed characterization of the skin barrier.This paper will allow the readership to get acquainted with the non-invasive, in vivo methods for the investigation of the skin barrier.  相似文献   
7.
Both epidemiological and experimental studies have demonstrated the crucial connection between air pollution exposure and skin disorders. The exact mechanisms by which air pollutants mediate skin damage remain largely unknown. Therefore, it is very necessary to investigate the mechanism of air pollution‐induced skin damage and explore some potential protective and therapeutic methods. In this review, we focus on the qualitative and quantitative skin exposure assessment methodologies—a relatively new field of interdisciplinary research.  相似文献   
8.
9.
Glycerol is a trihydroxy alcohol that has been included for many years in topical dermatological preparations. In addition, endogenous glycerol plays a role in skin hydration, cutaneous elasticity and epidermal barrier repair. The aquaporin-3 transport channel and lipid metabolism in the pilosebaceous unit have been evidenced as potential pathways for endogenous delivery of glycerol and for its metabolism in the skin. Multiple effects of glycerol on the skin have been reported. The diverse actions of the polyol glycerol on the epidermis include improvement of stratum corneum hydration, skin barrier function and skin mechanical properties, inhibition of the stratum corneum lipid phase transition, protection against irritating stimuli, enhancement of desmosomal degradation, and acceleration of wound-healing processes. Even an antimicrobial effect has been demonstrated. Topical application of glycerol-containing products improves skin properties in diseases characterized by xerosis and impaired epidermal barrier function, such as atopic dermatitis. The increase of epidermal hydration by glycerol is critical in skin conditions aggravated by dry and cold environmental conditions, e.g. winter xerosis. This paper provides a review on effects of glycerol on the skin, the mechanisms of its action, and the potential applications of glycerol in dermatology.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号