首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   4篇
临床医学   9篇
内科学   1篇
皮肤病学   1篇
药学   2篇
  2015年   1篇
  2014年   2篇
  2012年   2篇
  2011年   1篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1997年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
2.
Primaquine (PQ) remains the sole available drug to prevent relapse of Plasmodium vivax malaria more than 60 years after licensure. While this drug was administered as a racemic mixture, prior studies suggested a pharmacodynamic advantage based on differential antirelapse activity and/or toxicities of its enantiomers. Oral primaquine enantiomers prepared using a novel, easily scalable method were given for 7 days to healthy rhesus macaques in a dose-rising fashion to evaluate their effects on the blood, liver, and kidneys. The enantiomers were then administered to Plasmodium cynomolgi-infected rhesus macaques at doses of 1.3 and 0.6 mg/kg of body weight/day in combination with chloroquine. The (−)-PQ enantiomer had higher clearance and apparent volume of distribution than did (+)-PQ and was more extensively converted to the carboxy metabolite. There is evidence for differential oxidative stress with a concentration-dependent rise in methemoglobin (MetHgb) with increasing doses of (+)-PQ greater than that seen for (−)-PQ. There was a marked, reversible hepatotoxicity in 2 of 3 animals dosed with (−)-PQ at 4.5 mg/kg. (−)-PQ in combination with chloroquine was successful in preventing P. cynomolgi disease relapse at doses of 0.6 and 1.3 mg/kg/day, while 1 of 2 animals receiving (+)-PQ at 0.6 mg/kg/day relapsed. While (−)-PQ was also associated with hepatotoxicity at higher doses as seen previously, this has not been identified as a clinical concern in humans during >60 years of use. Limited evidence for increased MetHgb generation with the (+) form in the rhesus macaque model suggests that it may be possible to improve the therapeutic window for hematologic toxicity in the clinic by separating primaquine into its enantiomers.  相似文献   
3.
Combining artemisinin or a derivative with mefloquine increases cure rates in falciparum malaria patients, reduces transmission, and may slow the development of resistance. The combination of artesunate, given for 3 days, and mefloquine is now the treatment of choice for uncomplicated multidrug-resistant falciparum malaria acquired on the western or eastern borders of Thailand. To optimize mefloquine administration in this combination, a prospective study of mefloquine pharmacokinetics was conducted with 120 children (4 to 15 years old) with acute uncomplicated falciparum malaria, who were divided into four age- and sex-matched groups. The patients all received artesunate (4 mg/kg of body weight/day orally for 3 days and mefloquine as either (i) a single dose (25 mg/kg) on day 2 with food, (ii) a split dose (15 mg/kg on day 2 and 10 mg/kg on day 3) with food, (iii) a single dose (25 mg/kg) on day 0 without food, or (iv) a single dose (25 mg/kg) on day 2 without food. Delaying administration of mefloquine until day 2 was associated with a mean (95% confidence interval) increase in estimated oral bioavailability of 72% (36 to 109%). On day 2 coadministration with food did not increase mefloquine absorption significantly, and there were no significant differences between patients receiving split- and single-dose administration. In combination with artesunate, mefloquine administration should be delayed until the second or third day after presentation.  相似文献   
4.
A simple, nonisotopic, semiautomated bioassay for the measurement of antimalarial drug levels in plasma or serum based on the quantitation of histidine-rich protein II in malaria culture is presented. The assay requires only small sample volumes and was found to be highly sensitive and reproducible. The results closely paralleled those obtained with isotopic bioassays (R = 0.988, P < 0.001) and high-performance liquid chromatography-electrochemical detection (R = 0.978, P < 0.001).  相似文献   
5.
Dihydroartemisinin-piperaquine, the current first-line drug for uncomplicated malaria caused by Plasmodium falciparum and Plasmodium vivax in Cambodia, was previously shown to be of benefit as malaria chemoprophylaxis when administered as a monthly 3-day regimen. We sought to evaluate the protective efficacy of a compressed monthly 2-day treatment course in the Royal Cambodian Armed Forces. The safety and efficacy of a monthly 2-day dosing regimen of dihydroartemisinin-piperaquine were evaluated in a two-arm, randomized, double-blind, placebo-controlled cohort study with 2:1 treatment allocation. Healthy military volunteers in areas along the Thai-Cambodian border where there is a high risk of malaria were administered two consecutive daily doses of 180 mg dihydroartemisinin and 1,440 mg piperaquine within 30 min to 3 h of a meal once per month for a planned 4-month period with periodic electrocardiographic and pharmacokinetic assessment. The study was halted after only 6 weeks (69 of 231 projected volunteers enrolled) when four volunteers met a prespecified cardiac safety endpoint of QTcF (Fridericia''s formula for correct QT interval) prolongation of >500 ms. The pharmacodynamic effect on the surface electrocardiogram (ECG) peaked approximately 4 h after piperaquine dosing and lasted 4 to 8 h. Unblinded review by the data safety monitoring board revealed mean QTcF prolongation of 46 ms over placebo at the maximum concentration of drug in serum (Cmax) on day 2. Given that dihydroartemisinin-piperaquine is one of the few remaining effective antimalarial agents in Cambodia, compressed 2-day treatment courses of dihydroartemisinin-piperaquine are best avoided until the clinical significance of these findings are more thoroughly evaluated. Because ECG monitoring is often unavailable in areas where malaria is endemic, repolarization risk could be mitigated by using conventional 3-day regimens, fasting, and avoidance of repeated dosing or coadministration with other QT-prolonging medications. (This study has been registered at ClinicalTrials.gov under registration no. NCT01624337.)  相似文献   
6.
Cambodia''s first-line artemisinin combination therapy, dihydroartemisinin-piperaquine (DHA-PPQ), is no longer sufficiently curative against multidrug-resistant Plasmodium falciparum malaria at some Thai-Cambodian border regions. We report recent (2008 to 2013) drug resistance trends in 753 isolates from northern, western, and southern Cambodia by surveying for ex vivo drug susceptibility and molecular drug resistance markers to guide the selection of an effective alternative to DHA-PPQ. Over the last 3 study years, PPQ susceptibility declined dramatically (geomean 50% inhibitory concentration [IC50] increased from 12.8 to 29.6 nM), while mefloquine (MQ) sensitivity doubled (67.1 to 26 nM) in northern Cambodia. These changes in drug susceptibility were significantly associated with a decreased prevalence of P. falciparum multidrug resistance 1 gene (Pfmdr1) multiple copy isolates and coincided with the timing of replacing artesunate-mefloquine (AS-MQ) with DHA-PPQ as the first-line therapy. Widespread chloroquine resistance was suggested by all isolates being of the P. falciparum chloroquine resistance transporter gene CVIET haplotype. Nearly all isolates collected from the most recent years had P. falciparum kelch13 mutations, indicative of artemisinin resistance. Ex vivo bioassay measurements of antimalarial activity in plasma indicated 20% of patients recently took antimalarials, and their plasma had activity (median of 49.8 nM DHA equivalents) suggestive of substantial in vivo drug pressure. Overall, our findings suggest DHA-PPQ failures are associated with emerging PPQ resistance in a background of artemisinin resistance. The observed connection between drug policy changes and significant reduction in PPQ susceptibility with mitigation of MQ resistance supports reintroduction of AS-MQ, in conjunction with monitoring of the P. falciparum mdr1 copy number, as a stop-gap measure in areas of DHA-PPQ failure.  相似文献   
7.
Artemisinin and its derivatives, artesunate and artemether, are rapidly acting antimalarials that are used for the treatment of severe and uncomplicated multidrug-resistant falciparum malaria. To optimize treatment regimens that use this new class of antimalarials, there is a need for readily available and reproducible assays to monitor drug levels closely in patients. A sensitive and reproducible bioassay for the measurement of the concentrations of artemisinin derivatives in plasma and serum is described. By modifying the in vitro drug susceptibility test, it was found that antimalarial activity in plasma or serum containing an unknown concentration of drug could be equated to the known concentrations of dihydroartemisinin (DHA) required to inhibit parasite growth. Dose-response curves for a Plasmodium falciparum clone (clone W2) and DHA were used as a standard for each assay. Assays with plasma or serum spiked with DHA proved to be reproducible (coefficient of variation, 相似文献   
8.
The antimalarial activity of artemether following oral or intramuscular administration in the plasma of 15 adults with acute uncomplicated Plasmodium falciparum malaria was measured by bioassay. The peak concentrations in plasma following oral administration were higher in patients with acute illness (median, 1,905 mmol of dihydroartemisinin [DHA] equivalents per liter; range, 955 to 3,358 mmol of DHA equivalents per liter) than in patients in the convalescent phase (median, 955 mmol of DHA equivalents per liter; range, 576 to 1,363 mmol of DHA equivalents per liter), and clearance (CL/F) was lower in patients in the acute phase (1.11 liters/kg/h; range, 0.21 to 3.08 liters/kg/h) than in patients in the convalescent phase (median, 2.76 liters/kg/h; range, 1.56 to 5.74 liters/kg/h) (P< or =0.008). Antimalarial activity in terms of the peak concentration in plasma (Cmax) after oral administration was a median of 16 times higher than that after intramuscular administration. The ratio of the area under the plasma concentration-time curve during the first 24 h (AUC(0-24)) after oral administration of artemether to the AUC(0-24) after intramuscular administration was a median of 3.3 (range, 1 to 11) (P=0.0001). In the acute phase, the time to Cmax was significantly shorter after oral administration (median, 1 h; range, 0.5 to 3.0 h) than after intramuscular administration (median, 8 h; range, 4 to 24 h) (P=0.001). Intramuscular artemether is absorbed very slowly in patients with acute malaria.  相似文献   
9.
The pharmacokinetics, oral bioavailability, and ex vivo antimalarial activity of mirincamycin isomers in a healthy rhesus monkey model were assessed to support lead optimization of novel nonhemolytic drugs for radical cure and causal prophylaxis of malaria. Fourteen male rhesus monkeys were randomized to four groups, which included cis and trans isomers by the oral and intravenous routes, with vehicle-only controls for each dosing route. Concentration-time data were collected for 7 days and were analyzed by noncompartmental analysis. cis-Mirincamycin had an absolute oral bioavailability of 13.6%, which was slightly higher than that of trans-mirincamycin (11.7%), but this difference was not statistically significant. There was a statistically significant difference between the area under the concentration-time curve from zero to 48 h (AUC(0-48)) of cis-mirincamycin and that of trans-mirincamycin after oral dosing. When cultured in vitro with the W2 clone of Plasmodium falciparum, the 50% inhibitory concentrations for cis-mirincamycin, trans-mirincamycin, and dihydroartemisinin were 11,300, 12,300, and 2.30 nM, respectively. However, when dosed primate plasma was cultured ex vivo against the W2 clone, both isomers had much greater relative potencies than their in vitro activities relative to results for dihydroartemisinin, an increase of approximately 100-fold for the cis isomer and 150-fold for the trans isomer. Further, oral ex vivo activity was significantly higher than intravenous activity for both isomers, particularly during the first 90 min following dosing, suggesting the first-pass formation of one or more metabolites with blood-stage antimalarial activity. Identification of the metabolic pathways and metabolites may help to further delineate the properties of this class of drugs with previously demonstrated liver-stage antimalarial activity.  相似文献   
10.
Plasma antimalarial activity following oral artesunate or dihydroartemisinin (DHA) treatment was measured by a bioassay in 18 patients with uncomplicated falciparum malaria. The mean antimalarial activity in terms of the bioavailability of DHA relative to that of artesunate did not differ significantly from 1, suggesting that DHA can be formulated to be an acceptable oral alternative to artesunate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号