首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   386篇
  免费   27篇
  国内免费   2篇
耳鼻咽喉   1篇
儿科学   16篇
妇产科学   4篇
基础医学   80篇
临床医学   24篇
内科学   50篇
皮肤病学   10篇
神经病学   81篇
特种医学   8篇
外科学   18篇
综合类   1篇
预防医学   23篇
眼科学   8篇
药学   52篇
中国医学   3篇
肿瘤学   36篇
  2023年   6篇
  2022年   13篇
  2021年   13篇
  2020年   8篇
  2019年   6篇
  2018年   9篇
  2017年   4篇
  2016年   15篇
  2015年   14篇
  2014年   11篇
  2013年   26篇
  2012年   26篇
  2011年   26篇
  2010年   16篇
  2009年   18篇
  2008年   32篇
  2007年   32篇
  2006年   28篇
  2005年   27篇
  2004年   26篇
  2003年   18篇
  2002年   19篇
  2000年   1篇
  1998年   3篇
  1996年   7篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1989年   1篇
  1987年   1篇
  1981年   2篇
  1976年   2篇
排序方式: 共有415条查询结果,搜索用时 15 毫秒
1.
The purpose of the work was to set‐up a simple method to evaluate the contribution of Mn2+ ions in the intra‐ and extracellular tumor compartments in a MEMRI experiment. This task has been tackled by “silencing” the relaxation enhancement arising from Mn2+ ions in the extracellular space. In vitro relaxometric measurements allowed assessment of the sequestering activity of DO2A (1,4,7,10‐tetraazacyclododecane‐1,7‐diacetic acid) towards Mn2+ ions, as the addition of Ca‐DO2A to a solution of MnCl2 causes a drop of relaxivity upon the formation of the highly stable and low‐relaxivity Mn‐DO2A. It has been proved that the sequestering ability of DO2A towards Mn2+ ions is also fully effective in the presence of serum albumin. Moreover, it has been shown that Mn‐DO2A does not enter cell membranes, nor does the presence of Ca‐DO2A in the extracellular space prompt migration of Mn ions from the intracellular compartment. On this basis the in vivo, instantaneous, drop in SE% (percent signal enhancement) in T1‐weighted images is taken as evidence of the sequestration of extracellular Mn2+ ions upon addition of Ca‐DO2A. By applying the method to B16F10 tumor bearing mice, T1 decrease is readily detected in the tumor region, whereas a negligible change in SE% is observed in kidneys, liver and muscle. The relaxometric MRI results have been validated by ICP‐MS measurements. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
2.
We present evidence that dexamethasone (Dex), a synthetic glucocorticosteroid, causes apoptosis in mature human T cells, similarly to what has been reported for murine T lymphocytes. Human T cell clones and short-term activated T lymphocytes treated with Dex show the characteristic pattern of apoptotic cells, such as hypodiploid nuclei, chromatin condensation and DNA fragmentation into oligonucleosomal fragments. However, Dex susceptibility of T cells to apoptosis is cell cycle-dependent. The progression in the proliferative cell cycle (G1 versus S) rescues Dex-treated T cells from apoptosis. Moreover, occupancy of the T cell receptor reverses Dex-induced apoptotic phenomena. These observations suggest that glucocorticoids contribute to the regulation of the proliferative or the suicidal response of antigen-activated human T cells.  相似文献   
3.
Brody disease is a rare muscle disorder characterized by exercise-induced impairment in muscle relaxation, due to a markedly reduced influx of calcium ions in the sarcoplasmic reticulum. A subset of autosomal recessive families harbour mutations in the ATP2A1 gene, encoding the fast-twitch skeletal muscle sarcoplasmic reticulum Ca(2+) ATPase (SERCA1). Rare autosomal dominant families have been described, in which ATP2A1 was excluded as the causative gene, further supporting genetic heterogeneity. We report four individuals from a three-generation Italian family with a clinical phenotype of Brody disease, in which linkage analysis excluded ATP2A1 as the responsible gene. The disease cosegregates in an autosomal dominant fashion with an apparently balanced constitutional chromosome translocation (2;7)(p11.2;p12.1), suggesting a causal relationship between the rearrangement and the phenotype. FISH analysis using YAC and PAC clones as probes refined the breakpoint regions to genomic segments of about 164 and 120 kb, respectively, providing a possible clue to pinpoint the location of a novel gene responsible for this rare muscle disorder.  相似文献   
4.
Parkinson's disease (PD) is a progressive neurodegenerative illness associated with a selective loss of dopaminergic neurons in the nigrostriatal pathway of the brain. Despite the overall rarity of the familial forms of PD, the identification of single genes linked to the disease has yielded crucial insights into possible mechanisms of neurodegeneration. Recently, a putative mitochondrial kinase, PINK1, has been found mutated in an inherited form of parkinsonism. Here, we describe that PINK1 mutations confer different autophosphorylation activity, which is regulated by the C-terminal portion of the protein. We also demonstrate the mitochondrial localization of both wild-type and mutant PINK1 proteins unequivocally and prove that a short N-terminal part of PINK1 is sufficient for its mitochondrial targeting.  相似文献   
5.
6.
7.
8.
Serotonin 7 (5-hydroxytryptamine7 or 5-HT7) is the most recently identified serotonin receptor. It is involved in mood disorders and is studied as a target for antidepressants. Here, we report on the structural manipulation of the 5-HT7 receptor ligand 4-[2-(3-methoxyphenyl)ethyl]-1-(2-methoxyphenyl)piperazine (1a) aimed at obtaining 5-HT7 receptor ligands endowed with good in vitro metabolic stability. A set of N-[3-methoxyphenyl)ethyl-substituted] 1-arylpiperazine, 4-arylpiperidine and 1-aryl-4-aminopiperidine was synthesized and tested in radioligand binding assays at human cloned 5-HT7 and 5-HT1A receptors. In vitro metabolic stability of the target compounds was assessed after incubation with rat hepatic S9 microsomal fraction. Among the new compounds, 1-(2-biphenyl)-4-[2-(3-methoxyphenyl)ethyl]piperazine (1d) and 4-(2-biphenyl)-1-[2-(3-methoxyphenyl)ethyl]piperidine (2d) showed a good compromise between affinity at 5-HT7 receptor (K i = 7.5 nM and 13 nM, respectively) and in vitro metabolic stability (26 and 65 % recovery of parent compound, respectively) but were poorly selective over 5-HT1A receptor.  相似文献   
9.
Metastasis is the leading cause of cancer death, yet it is mechanistically considered a very inefficient process suggesting the presence of some sort of (e.g. systemic) routes for fuelling the process. The pre-metastatic niche formation is described as one such metastasis promoting route. Now, the emerging potentials of tumor-derived microvesicles (TDMVs), not only in formulating the pre-metastatic niche, but also conferring neoplastic phenotypes onto normal cells, has integrated new concepts into the field. Here, we note as an ancillary proposition that, exerting functional disturbances in other sites, TDMVs (we have termed them metastasomes) may aid foundation of the secondary lesions via two seemingly interrelated models: (i) tumor-organ-training (TOTr), training a proper niche for the growth of the disseminated tumor cells; (ii) tumor-organ-targeting (TOTa), contribution to the propagation of the transformed phenotype via direct or indirect (TOTr-mediated disturbed stroma) transformation and/or heightened growth/survival states of the normal resident cells in the secondary organs. Respecting the high content of the RNA molecules (particularly microRNAs) identified in the secretory MVs, they may play crucial parts in such “malignant trait” spreading system. That is, the interactions between tumor tissue-specific RNA signatures, being transferred via metastasomes, and the cell-type/tissue-specific RNA stockrooms in other areas may settle a unique outcome in each organ. Thus, serving as tumor-organ matchmakers, the RNA molecules may also play substantial roles in the seeding and tropism of the process.  相似文献   
10.
We describe a consanguineous Iraqi family with Leber congenital amaurosis (LCA), Joubert syndrome (JBTS), and polycystic kidney disease (PKD). Targeted next‐generation sequencing for excluding mutations in known LCA and JBTS genes, homozygosity mapping, and whole‐exome sequencing identified a homozygous missense variant, c.317G>C (p.Arg106Pro), in POC1B, a gene essential for ciliogenesis, basal body, and centrosome integrity. In silico modeling suggested a requirement of p.Arg106 for the formation of the third WD40 repeat and a protein interaction interface. In human and mouse retina, POC1B localized to the basal body and centriole adjacent to the connecting cilium of photoreceptors and in synapses of the outer plexiform layer. Knockdown of Poc1b in zebrafish caused cystic kidneys and retinal degeneration with shortened and reduced photoreceptor connecting cilia, compatible with the human syndromic ciliopathy. A recent study describes homozygosity for p.Arg106ProPOC1B in a family with nonsyndromic cone‐rod dystrophy. The phenotype associated with homozygous p.Arg106ProPOC1B may thus be highly variable, analogous to homozygous p.Leu710Ser in WDR19 causing either isolated retinitis pigmentosa or Jeune syndrome. Our study indicates that POC1B is required for retinal integrity, and we propose POC1B mutations as a probable cause for JBTS with severe PKD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号