首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
内科学   2篇
皮肤病学   6篇
  2022年   1篇
  2021年   1篇
  1986年   1篇
  1975年   1篇
  1974年   3篇
  1972年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
2.
3.
4.
5.
Within the framework of the concept of deformable solid mechanics, an analytical-numerical method to the problem of determining the mechanical fields in the composite structures with interphase ribbon-like deformable multilayered inhomogeneities under combined force and dislocation loading has been proposed. Based on the general relations of linear elasticity theory, a mathematical model of thin multilayered inclusion of finite width is constructed. The possibility of nonperfect contact along a part of the interface between the inclusion and the matrix, and between the layers of inclusion where surface energy or sliding with dry friction occurs, is envisaged. Based on the application of the theory of functions of a complex variable and the jump function method, the stress-strain field in the vicinity of the inclusion during its interaction with the concentrated forces and screw dislocations was calculated. The values of generalized stress intensity factors for the asymptotics of stress-strain fields in the vicinity of the ends of thin inhomogeneities are calculated, using which the stress concentration and local strength of the structure can be calculated. Several effects have been identified which can be used in designing the structure of layers and operation modes of such composites. The proposed method has shown its effectiveness for solving a whole class of problems of deformation and fracture of bodies with thin deformable inclusions of finite length and can be used for mathematical modeling of the mechanical effects of thin FGM heterogeneities in composites.  相似文献   
6.
A numerical–analytical approach to the problem of determining the stress–strain state of bimaterial structures with interphase ribbon-like deformable inhomogeneities under combined force and dislocation loading has been proposed. The possibility of delamination along a part of the interface between the inclusion and the matrix, where sliding with dry friction occurs, is envisaged. A structurally modular method of jump functions is constructed to solve the problems arising when nonlinear geometrical or physical properties of a thin inclusion are taken into account. A complete system of equations is constructed to determine the unknowns of the problem. The condition for the appearance of slip zones at the inclusion–matrix interface is formulated. A convergent iterative algorithm for analytical and numerical determination of the friction-slip zones is developed. The influence of loading parameters and the friction coefficient on the development of these zones is investigated.  相似文献   
7.
8.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号