首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   938篇
  免费   45篇
  国内免费   4篇
儿科学   21篇
妇产科学   10篇
基础医学   146篇
口腔科学   26篇
临床医学   61篇
内科学   291篇
皮肤病学   17篇
神经病学   54篇
特种医学   14篇
外科学   171篇
综合类   4篇
预防医学   12篇
眼科学   37篇
药学   77篇
中国医学   1篇
肿瘤学   45篇
  2023年   10篇
  2022年   20篇
  2021年   35篇
  2020年   15篇
  2019年   18篇
  2018年   19篇
  2017年   17篇
  2016年   19篇
  2015年   11篇
  2014年   18篇
  2013年   21篇
  2012年   51篇
  2011年   44篇
  2010年   25篇
  2009年   18篇
  2008年   49篇
  2007年   52篇
  2006年   56篇
  2005年   67篇
  2004年   59篇
  2003年   52篇
  2002年   57篇
  2001年   20篇
  2000年   10篇
  1999年   17篇
  1998年   14篇
  1997年   13篇
  1996年   10篇
  1995年   4篇
  1994年   5篇
  1993年   4篇
  1992年   17篇
  1991年   13篇
  1990年   14篇
  1989年   13篇
  1988年   6篇
  1987年   12篇
  1986年   5篇
  1985年   14篇
  1984年   4篇
  1983年   9篇
  1982年   6篇
  1981年   4篇
  1980年   4篇
  1979年   7篇
  1978年   9篇
  1977年   4篇
  1976年   3篇
  1975年   2篇
  1973年   2篇
排序方式: 共有987条查询结果,搜索用时 31 毫秒
1.
2.
Summary Cytochemical staining of normal human bone cells in monolayer cultures for alkaline phosphatase (ALP) indicated that the cultures contained mixed-cell populations. Time course evaluations of the cytochemical staining revealed, in addition to the ALP-negative cell population, at least two subpopulations of ALP-positive human bone cells with different levels of ALP. A cytochemical method has been developed which separates the ALP-positive cells into high and intermediate ALP subpopulations. In this method, human bone cells were stained for ALP using an azo-dye method and incubating at 4°C for 10 and 30 minutes, respectively. We defined the cell population that stained positively for ALP at 10 minutes as strong ALP-positive cells, and both strong and intermediate cells were stained at 30 minutes. The intermediate cells were determined from the difference between the values at the two time points. The intra- and interassay variations of the assay, with the same investigator in blinded investigations, were both less than 10% and the interobserver variation was approximately 25%. Analysis of the distribution of ALP levels in cells with a laser densitometer confirmed the presence of at least three cell subpopulations. 1,25(OH)2D3 treatment increased the proportions of both ALP-positive cell populations, whereas TGF-beta treatment increased only the intermediate ALP-positive cell population. On the contrary, fluoride increased the proportion of the strong ALP cells, and IGF-1 had no effect on the proportions of either ALP-positive subpopulation. When the ALP-specific activity was compared with the percentage of each ALP-positive subpopulations for the cells treated with effectors, the ALP-specific activity correlated with the total ALP-positive and with the strong ALP-positive populations but not with the intermediate ALP-positive subpopulation. In summary, this study represents the first evidence that normal human bone cells in monolayer cultures contained at least two subpopulations of ALP-positive cells, and that bone cell effectors could have differential effects on each cell population.  相似文献   
3.
1. In an attempt to explain the previous electrophysiological data on the ontogeny of beta-adrenergic and muscarinic cholinergic interactions on cardiac Ca2+ current, biochemical studies were performed on the ontogeny of beta-adrenoceptors, muscarinic cholinoceptors and Ca2+ channels in cardiac muscle of developing rats: 16-20 days old foetuses, 0-20 days old neonates, and 2-3 months old adults. 2. Developmental changes in cardiac beta-adrenoceptors, muscarinic cholinoceptors, and Ca2+ channels were determined with the use of specific radioligands, [3H]-dihydroalprenolol (DNA), [3H]-quinuclidinyl benzilate (QNB), and [3H]-nitrendipine (NTD), respectively. 3. The Bmax value (fmol mg-1 tissue) for [3H]-DNA binding started to increase on post-gestation day 20, reached almost its maximum level on neonatal day 6, kept almost the same level until neonatal day 20, and then decreased slightly to its adult level. 4. The Bmax value (fmol mg-1 tissue) for [3H]-QNB binding started to increase on post-gestation day 16, reached almost its maximum level on neonatal day 0, remained almost constant until neonatal day 15, and then decreased to its adult level. 5. The Bmax value (fmol mg-1 tissue) for [3H]-NTD binding increased with age between post-gestation day 18 and neonatal day 15, stayed almost constant until neonatal day 20, and then decreased to its adult level. 6. The Kd values for [3H]-DHA, [3H]-QNB, and [3H]-NTD bindings remained almost constant during the developmental period examined.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
4.
5.
6.
ABSTRACT: Human leukocyte antigen (HLA) genes are candidates for susceptibility genes in insulin-dependent diabetes mellitus (IDDM). Recently, the association of DR and DQ with IDDM has been reported, but the role of HLA-DP genes remains uncertain. To address the question, we analyzed the DPB1 gene of 20 Japanese IDDM patients and 30 control subjects using a combination of polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) analysis (PCR-RFLP method). DPB1*0501 was the most frequent allele both in Japanese patients and control subjects. There was no appreciable association between IDDM and the DPB1 allele in Japanese. The absence of association between IDDM and DP, in spite of the known association between this disease and both DR and DQ, suggests that the HLA locus (loci) telomeric to DP encodes susceptibility to IDDM.  相似文献   
7.
Morphological studies have demonstrated that a chronic increase in distal Na+ delivery causes hypertrophy of the distal convoluted tubule (DCT). To examine whether high NaCl-intake also causes functional changes in the well defined DCT, we measured transmural voltage (V T), lumen-to-bath Na+ flux (J Na(LB)), and net K+ secretion (J K(net)) in DCTs obtained from control rabbits and those on high NaCl-intake diets. The lumen negativeV T was significantly greater in the high NaCl group than in the control group. The net K+ secretion (pmol mm–1 min–1) was greater in the high NaCl-intake group (54.1±13.0 vs 14.7±5.6). The K+ permeabïlities in both luminal and basolateral DCT membranes, as assessed by the K+-induced transepithelial voltage deflection inhibitable with Ba2+, were increased in the experimental group. The lumen-to-bath22Na flux (pmol mm–1 min–1) was also greater in the experimental group (726±119 vs 396±65). TheV T component inhibitable with amiloride was also elevated in the high NaCl-intake group. Furthermore, Na+–K+-ATPase activity of the DCT was higher in the experimental than in the control group. We conclude that high NaCl intake increases both Na+ reabsorption and K+ secretion by the DCT. This phenomenon is associated with an increased Na+–K+-ATPase activity along with increased Na+ and K+ permeabilities of the luminal membrane, and an increase in the K+ permeability of the basolateral membrane. Cellular mechanisms underlying these functional changes remain to be established.  相似文献   
8.
Deletions or translocations of chromosome band 13q14, the locus of the retinoblastoma gene (RB1), have been observed in a variety of hematological malignancies including myelodysplastic syndrome (MDS). We describe here a novel unbalanced translocation der(13)t(7;13)(p13;q14) involving 13q14 in a patient with MDS. A 66-year-old woman was diagnosed as having MDS, refractory anemia with excess of blasts (RAEB-1) because of 7.4% blasts and trilineage dysplasia in the bone marrow cells. G-banding and spectral karyotyping analyses showed complex karyotypes as follows: 46,XX,der(6)t(6;7)(q11;?),der(7)del(7)(?p13)t(6;7)(q?;q11)t(6;13)(q?;q?),der(13)t(7;13)(p13;q14). Fluorescence in situ hybridization (FISH) analyses demonstrated that one allele of the RB1 gene and the microsatellite locus D13S319, located at 13q14 and telomeric to the RB1 gene, was deleted. Considering other reported cases, our results indicate that submicroscopic deletions accompanying 13q14 translocations are recurrent cytogenetic aberrations in MDS. The RB1 gene or another tumor suppressor gene in the vicinity of D13S319, or both, may be involved in the pathogenesis of MDS with 13q14 translocations by monoallelic deletion.  相似文献   
9.
The recent advent of neuroimaging techniques provides an opportunity to examine brain regions related to a specific memory process such as episodic memory encoding. There is, however, a possibility that areas active during an assumed episodic memory encoding task, compared with a control task, involve not only areas directly relevant to episodic memory encoding processes but also areas associated with other cognitive processes for on-line information. We used positron emission tomography (PET) to differentiate these two kinds of regions. Normal volunteers were engaged in deep (semantic) or shallow (phonological) processing of new or repeated words during PET. Results showed that deep processing, compared with shallow processing, resulted in significantly better recognition performance and that this effect was associated with activation of various brain areas. Further analyses revealed that there were regions directly relevant to episodic memory encoding in the anterior part of the parahippocampal gyrus, inferior frontal gyrus, supramarginal gyrus, anterior cingulate gyrus, and medial frontal lobe in the left hemisphere. Our results demonstrated that several regions, including the medial temporal lobe, play a role in episodic memory encoding.  相似文献   
10.
Oxidative stress induces the activation of multiple signaling pathways related to various cellular responses. In B cells, Syk has a crucial role in intracellular signal transduction induced by oxidative stress as well as antigen receptor engagement. Treatment of B cells with hydrogen peroxide (H(2)O(2)) induces enzymatic activation of Syk. Syk is essential for Ca(2+) release from intracellular pools through phospholipase C-gamma2 and the activation of c-Jun N-terminal kinase, p38 mitogen-activated protein kinase, and phosphatidylinositol 3-kinase-Akt survival pathway following H(2)O(2) stimulation. Oxidative stress-induced cellular responses in B cells follow different patterns, such as necrosis, apoptosis, and mitotic arrest, according to the intensity of H(2)O(2) stimulation. Syk is involved in the protection of cells from apoptosis and induction of G2/M arrest. Syk leads to the activation of the phosphatidylinositol 3-kinase-Akt survival pathway, thereby enhancing cellular resistance to oxidative stress-induced apoptosis. On the other hand, Syk-dependent phospholipase C-gamma2 activation is required for acceleration toward apoptosis following oxidative stress. These findings suggest that oxidative stress-induced Syk activation triggers the activation of several pathways, such as proapoptotic and survival pathways, and the balance among these various pathways is a key factor in determining the fate of a cell exposed to oxidative stress.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号