首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
基础医学   1篇
内科学   4篇
  2015年   1篇
  2014年   1篇
  2009年   1篇
  2006年   1篇
  1993年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
We demonstrate, to our knowledge, the first bright circularly polarized high-harmonic beams in the soft X-ray region of the electromagnetic spectrum, and use them to implement X-ray magnetic circular dichroism measurements in a tabletop-scale setup. Using counterrotating circularly polarized laser fields at 1.3 and 0.79 µm, we generate circularly polarized harmonics with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right circularly polarized peaks, with energies determined by conservation of energy and spin angular momentum. We explain the single-atom and macroscopic physics by identifying the dominant electron quantum trajectories and optimal phase-matching conditions. The first advanced phase-matched propagation simulations for circularly polarized harmonics reveal the influence of the finite phase-matching temporal window on the spectrum, as well as the unique polarization-shaped attosecond pulse train. Finally, we use, to our knowledge, the first tabletop X-ray magnetic circular dichroism measurements at the N4,5 absorption edges of Gd to validate the high degree of circularity, brightness, and stability of this light source. These results demonstrate the feasibility of manipulating the polarization, spectrum, and temporal shape of high harmonics in the soft X-ray region by manipulating the driving laser waveform.High-harmonic generation (HHG) results from an extreme nonlinear quantum response of atoms to intense laser fields. When implemented in a phase-matched geometry, bright, coherent HHG beams can extend to photon energies beyond 1.6 keV (1, 2). For many years, however, bright HHG was limited to linear polarization, precluding many applications in probing and characterizing magnetic materials and nanostructures, as well as chiral phenomena in general. Although X-ray optics can in principle be used to convert extreme UV (EUV) and X-ray light from linear to circular polarization, in practice such optics are challenging to fabricate and have poor throughput and limited bandwidth (3). A more appealing option is the direct generation of elliptically polarized (46) and circularly polarized (79) high harmonics. In recent work we showed that by using a combination of 0.8 and 0.4 µm counterrotating driving fields, bright (i.e., phase-matched) EUV HHG with circular polarization can be generated at wavelengths λ > 18 nm and used for EUV magnetic dichroism measurements (1013).Here we make, to our knowledge, the first experimental demonstration of circularly polarized harmonics in the soft X-ray region to wavelengths λ < 8 nm, and use them to implement soft X-ray magnetic circular dichroism (XMCD) measurements using a tabletop-scale setup. By using counterrotating driving lasers at 0.79 µm (1.57 eV) and 1.3 µm (0.95 eV), we generate bright circularly polarized soft X-ray HHG beams with photon energies greater than 160 eV (14) and with flux comparable to the HHG flux obtained using linearly polarized 800-nm driving lasers (15). Moreover we implement, to our knowledge, the first advanced simulations of the coherent buildup of circularly polarized high harmonics to show how the macroscopic phase-matching physics and ellipticity of the driving lasers influence the HHG spectra, number of bright attosecond bursts, and the degree of circular polarization.This work presents several new capabilities and findings. First, circularly polarized HHG provides a unique route for generating bright narrowband (λλ > 400) harmonic peaks in the soft X-ray region, to complement the soft X-ray supercontinua that are produced with linearly polarized mid-IR lasers (2, 15, 16). This capability is significant because it provides an elegant and efficient route for shaping soft X-ray light by manipulating the driving laser light, and is very useful for applications in high-resolution coherent imaging (1721) and photoelectron spectroscopies. Second, we show that the macroscopic phase-matching physics of circularly polarized soft X-ray HHG driven by mid-IR lasers has similarities to linearly polarized HHG, where the number of bright attosecond bursts is limited by the finite phase-matching temporal window. Third, we implement the first tabletop XMCD measurements at the N4,5 absorption edges of Gd. The Gd/Fe multilayer sample is a candidate material for next-generation all-optical magnetic storage devices (22), but has been inaccessible to HHG XMCD until now. This capability also opens up the possibility of probing spin dynamics in rare-earth elements using HHG, which has been successfully used for 3d transition metals to uncover the fastest spin dynamics using EUV HHG (23, 24). Finally, and most importantly, these results demonstrate the universal nature of circularly polarized HHG that can be generated across the EUV and soft X-ray spectral regions using a broad range of driving laser wavelengths.  相似文献   
2.
High harmonic generation driven by femtosecond lasers makes it possible to capture the fastest dynamics in molecules and materials. However, to date the shortest subfemtosecond (attosecond, 10−18 s) pulses have been produced only in the extreme UV region of the spectrum below 100 eV, which limits the range of materials and molecular systems that can be explored. Here we experimentally demonstrate a remarkable convergence of physics: when midinfrared lasers are used to drive high harmonic generation, the conditions for optimal bright, soft X-ray generation naturally coincide with the generation of isolated attosecond pulses. The temporal window over which phase matching occurs shrinks rapidly with increasing driving laser wavelength, to the extent that bright isolated attosecond pulses are the norm for 2-µm driving lasers. Harnessing this realization, we experimentally demonstrate the generation of isolated soft X-ray attosecond pulses at photon energies up to 180 eV for the first time, to our knowledge, with a transform limit of 35 attoseconds (as), and a predicted linear chirp of 300 as. Most surprisingly, advanced theory shows that in contrast with as pulse generation in the extreme UV, long-duration, 10-cycle, driving laser pulses are required to generate isolated soft X-ray bursts efficiently, to mitigate group velocity walk-off between the laser and the X-ray fields that otherwise limit the conversion efficiency. Our work demonstrates a clear and straightforward approach for robustly generating bright isolated attosecond pulses of electromagnetic radiation throughout the soft X-ray region of the spectrum.High-order harmonic generation (HHG) is the most extreme nonlinear optical process in nature, making it possible to coherently upconvert intense femtosecond laser light to much shorter wavelengths (1, 2). High harmonics are radiated as a result of a coherent electron recollision process that occurs each half-cycle of the driving laser field while an atom is undergoing strong-field ionization. The short pulse duration of HHG (which must be shorter than the driving laser pulse) has made it possible to directly access the fastest timescales relevant to electron dynamics in atoms, molecules, and materials. The unique properties of attosecond HHG in the extreme UV (EUV) have uncovered new understanding of fundamental processes in atoms, molecules, plasmas, and materials, including the timescales on which electrons are emitted from atoms (3), the timescale for spin–spin and electron–electron interactions (4, 5), the timescale that determines molecular dissociation and electron localization (69), the timescale and mechanisms for spin and energy transport in nanosystems (1012), as well as new capabilities to implement EUV microscopes with wavelength-limited spatial resolution (13).The temporal structure of HHG is related to the number of times a high-energy electron undergoes a coherent recollision process, as well as the time window over which bright harmonics emerge. Using multicycle 0.8-µm driving lasers, HHG generally emerges as a train of attosecond (as) pulses (14, 15) corresponding to a series of harmonic peaks in frequency space. This emission can narrow to a single isolated as burst when the driving laser field is a few optical cycles (∼5 fs) in duration (16, 17), with an associated broad continuous spectrum. Other techniques can isolate a single burst using a combination of multicolor fields and polarization control (1826) or spatial lighthouse gating of the driving laser pulses (27, 28). Phase matching can also result in bright isolated as pulse generation for short driving laser pulses (29, 30). To obtain bright, phase-matched, high harmonic beams, the laser and HHG fields must both propagate at the speed of light c so that emission from many atoms interferes constructively. Above a critical ionization level, the phase velocity of the laser exceeds c, which terminates the HHG temporal emission. The chirp present on attosecond bursts can be compensated by using thin materials, gases, or chirped mirrors (3133). To date, however, most schemes for creating isolated attosecond pulses require either very short-duration few-cycle 0.8-µm driving laser pulses that are difficult to reliably generate, or complex polarization modulation schemes. In addition, the carrier envelope phase (CEP) of the driving laser pulse must be stabilized.A more general understanding of how to efficiently sculpt the temporal, spatial, and spectral characteristics of HHG emission over an extremely broad photon energy range (from the EUV to the keV and higher) has emerged in recent years (3439). This understanding is critical both for a fundamental understanding of strong-field quantum physics, as well as for applications which have fundamentally different needs in terms of the HHG pulse duration, spectral bandwidth, and flux. By considering both the microscopic single-atom response as well as the macroscopic coherent buildup of HHG, efficient phase-matched HHG can now be implemented from the EUV to >keV photon energies, simply by driving HHG with midinfrared (mid-IR) femtosecond driving lasers. This advance represents, to our knowledge, the first general-purpose, tabletop, coherent soft X-ray light source (39). Furthermore, theory suggested that bright isolated attosecond X-ray bursts would be achievable using multicycle mid-IR driving lasers in a phase-matched geometry (35). However, the low repetition rate of the driving lasers precluded experimental testing of these predictions. Moreover, formidable computation requirements meant that advanced simulations could not be fully extended into the mid-IR region at 2–4 µm.In this paper, we experimentally demonstrate a beautiful convergence of physics for mid-IR (2-µm) driving lasers by showing that the conditions for optimal bright, soft X-ray generation naturally coincide with the generation of bright isolated attosecond soft X-ray bursts. We combine advanced theory with a novel experimental method equivalent to high-resolution Fourier transform spectroscopy to measure bright, attosecond soft X-ray pulses for the first time, to our knowledge. Specifically, we measure a field autocorrelation pulse width of 70 as, corresponding to a transform-limited 35-as pulse, that is supported by a coherent supercontinuum spectrum extending to photon energies around 180 eV. We also validate experimentally, for the first time, to our knowledge, the most intuitive dynamic picture of phase matching of HHG in the time domain by clearly demonstrating that the temporal window during which phase matching occurs shrinks rapidly with increasing driving laser wavelength. Finally, we show through advanced theory that the isolated attosecond pulse is chirped to 300 as. Most surprisingly, we find that bright attosecond pulse generation in the soft X-ray region requires the use of longer-duration, multicycle, mid-IR driving lasers to mitigate group velocity walk-off issues that would otherwise reduce the conversion efficiency. By harnessing the beautiful physics of phase matching, this work represents the simplest and most robust scheme for attosecond soft X-ray pulse generation, and will make attosecond science and technology accessible to a broader community.  相似文献   
3.
We show how bright, tabletop, fully coherent hard X-ray beams can be generated through nonlinear upconversion of femtosecond laser light. By driving the high-order harmonic generation process using longer-wavelength midinfrared light, we show that, in theory, fully phase-matched frequency upconversion can extend into the hard X-ray region of the spectrum. We verify our scaling predictions experimentally by demonstrating phase matching in the soft X-ray region of the spectrum around 330 eV, using ultrafast driving laser pulses at 1.3-μm wavelength, in an extended, high-pressure, weakly ionized gas medium. We also show through calculations that scaling of the overall conversion efficiency is surprisingly favorable as the wavelength of the driving laser is increased, making tabletop, fully coherent, multi-keV X-ray sources feasible. The rapidly decreasing microscopic single-atom yield, predicted for harmonics driven by longer-wavelength lasers, is compensated macroscopically by an increased optimal pressure for phase matching and a rapidly decreasing reabsorption of the generated X-rays.  相似文献   
4.
We report a previously undescribed spectroscopic probe that makes use of electrons rescattered during the process of high-order harmonic generation. We excite coherent vibrations in SF(6) using impulsive stimulated Raman scattering with a short laser pulse. A second, more intense laser pulse generates high-order harmonics of the fundamental laser, at wavelengths of approximately 20-50 nm. The high-order harmonic yield is observed to oscillate, at frequencies corresponding to all of the Raman-active modes of SF(6), with an asymmetric mode most visible. The data also show evidence of relaxation dynamics after impulsive excitation of the molecule. Theoretical modeling indicates that the high harmonic yield should be modulated by both Raman and infrared-active vibrational modes. Our results indicate that high harmonic generation is a very sensitive probe of vibrational dynamics and may yield more information simultaneously than conventional ultrafast spectroscopic techniques. Because the de Broglie wavelength of the recolliding electron is on the order of interatomic distances, i.e., approximately 1.5 A, small changes in the shape of the molecule lead to large changes in the high harmonic yield. This work therefore demonstrates a previously undescribed spectroscopic technique for probing ultrafast internal dynamics in molecules and, in particular, on the chemically important ground-state potential surface.  相似文献   
5.
Age-related changes in T cell subsets were examined in intestinal intraepithelial lymphocytes (i-IEL), which contain unique T cells differentiating extrathymically. In 2-month-old mice bred under conventional condition, i-IEL consisted of a large number of CD4?CD8α/α+ cells bearing either T cell receptor (TcR)α/β or TcRγ/δ and only a few CD4+CD8α? cells. In aged mice (6 months old and 24 months old), unique CD4+CD8α/α+ i-IEL bearing TcRα/β increased in number and conversely the proportion of TcRγ/δ+ i-IEL was decreased. Such an increase in number of CD4+CD8α/α+ cells was detected in i-IEL from aged (14-months old) nude mice, but not in aged (14 months old) germ-free mice, suggesting that a significant fraction of TcRα/β T cells such as CD4+CD8α+ i-IEL can develop along an extrathymic pathway under the influence of intestinal microflora with age.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号