首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   2篇
  国内免费   1篇
基础医学   1篇
口腔科学   2篇
临床医学   5篇
内科学   6篇
神经病学   1篇
外科学   1篇
综合类   1篇
预防医学   1篇
药学   5篇
肿瘤学   2篇
  2022年   2篇
  2021年   1篇
  2019年   1篇
  2018年   2篇
  2016年   1篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2011年   5篇
  2010年   1篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  1977年   1篇
  1972年   1篇
排序方式: 共有25条查询结果,搜索用时 468 毫秒
1.
2.
Electronic skins (e-skins) are soft (deformable and stretchable) state-of-the-art wearable devices that emulate the attributes of human skin and act as a Human–Machine Interface (HMI). Recent advances in e-skin for real-time detection of medical signals such as pulse, temperature, electromyogram (EMG), electroencephalogram (EEG), electrooculogram (EOG), electrocardiogram (ECG), and other bioelectric signals laid down an intelligent foundation for early prediction and diagnosis of diseases with a motive of reducing the risk of the ailment reaching to the end stage. In particular, sweat testing has been employed in diverse applications ranging from medical diagnosis of diabetes, cystic fibrosis, tuberculosis, blood pressure, and autonomic neuropathy to evaluating fluid and electrolyte balance in athletes. Typically, sweat testing techniques are done by trained experts and require off-body measurements, which prevent individuals from de-coding health issues quickly and independently. With the onset of soft electronics, wearable sweat sensors overcome this disadvantage via in situ sweat measurements with real-time feedback, timely diagnosis, creating the potential for preventive care and treatment. Over the past few decades, wearable microfluidic-based e-skin sweat sensors have paved a new way, promising sensing interfaces that are highly compatible with arranging medical and electronic applications. The present review highlights the recent research carried out in the microfluidic-based wearable sweat sensors with a critical focus on real-time sensing of lactate, chloride, and glucose concentration; sweat rate, simultaneously with pH, and total sweat loss for preventive care, timely diagnosis, and point-of-care health and fitness monitoring.

Electronic skins are soft wearable devices that emulate attributes of human skin and act as a human–machine interface for early prediction and real-time monitoring of disease.  相似文献   
3.
Carpal tunnel syndrome. First manifestation of systemic lupus erythematosus   总被引:1,自引:0,他引:1  
M Sidiq  A B Kirsner  R P Sheon 《JAMA》1972,222(11):1416-1417
  相似文献   
4.
Matrix metalloproteinase (MMP)-mediated degradation of the extracellular matrix is a major factor for tumor development and expansion. This study analysed MMP-10 protein expression and activity in human lung tumors of various grade, stage, and type to address the relationship between MMP-10 and tumor characteristics and to evaluate MMP-10 as a therapeutic target in non small cell lung carcinoma (NSCLC). Unlike the majority of MMPs, MMP-10 was located in the tumor mass as opposed to tumor stroma. MMP-10 protein was observed at low levels in normal human lung tissues and at significantly higher levels in all types of NSCLC. No correlation was observed between MMP-10 protein expression and tumor type, stage, or lymph node invasion. To discriminate between active and inactive forms of MMP-10 in samples of human NSCLC, we have developed an ex vivo fluorescent assay. Measurable MMP-10 activity was detected in 42 of 50 specimens of lung cancer and only 2 of 10 specimens of histologically normal lung tissue. No relationship was observed between MMP-10 activity levels and clinicopathologic characteristics. Our results suggest that MMP-10 is expressed and active at high levels in human NSCLC compared to normal lung tissues, and, as such, is a potential target for the development of novel therapeutics for lung cancer treatment.  相似文献   
5.
In order to evaluate the role of ethyl acetate fraction (PNRS-EtOAC) obtained from the Prunus cerasus fruit in the modulation of immune responses, detailed studies were carried out using a panel of in vivo assays. Oral administration of PNRS-EtOAC (25-100 mg/kg) stimulated the IgM and IgG titre expressed in the form of hemagglutination antibody (HA) titre. Further, it elicited a dose related increase in the delayed type hypersensitivity reaction (DTH) after 24 and 48 h in BALB/c mice. Besides augmenting the humoral and cell mediated immune response, the concentration of cytokines (IFN-γ, IL-4, and TNF-α) in serum with respect to T cell interactions, i.e. the proliferation of lymphocytes were significantly increased at 50 mg/kg compared with the control. The results in these studies demonstrated the immunostimulatory effect of PNRS-EtOAC in a dose-dependent manner with respect to the macrophage activation possibly expressing the phagocytosis and nitrite production by the enhancement of TNF-α production as a mode of action.  相似文献   
6.
The Ilizarov method has been studied extensively in the management of non-union of long bones. In most cases this involves filling of defects present primarily or after débridement by bone transport. Acute docking over gaps longer than 2 cm has not been adequately studied, however. The purpose of this paper is to report the efficacy of acute peg in hole docking as a bone graft-sparing modality in the management of infected non-union of long bones.  相似文献   
7.
8.
9.
Herein we report an efficient one-pot synthesis of [1,2,4]triazolo[1,5 a][1,3,5]triazines from commercially available substituted aryl/heteroaryl aldehydes and substituted 2-hydrazinyl-1,3,5-triazines via N-bromosuccinimide (NBS) mediated oxidative C–N bond formation. Isomerisation of [1,2,4]triazolo[4,3-a][1,3,5]triazines to [1,2,4]triazolo[1,5-a][1,3,5]triazines is driven by 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) affording both isomers with good to excellent yields (70–96%).

We demonstrate a simple yet efficient one-pot synthesis of two triazolotriazine isomers via DBU mediated Dimroth type rearrangement with excellent yields.

Purines are nitrogen-containing heterocycles and are structural motifs in the nucleobases adenine and guanine of DNA as well as RNA. Purine nucleotides (ATP, GTP, cAMP, cGMP, NAD, FAD) also act as co-factors, substrates, or mediators in the functioning of numerous proteins.1 Therefore, bioisosteres of purines are widely explored and exploited by pharmaceutical chemists in developing new drug entities. Heterocycles containig the 1,3,5-triazine ring act as bioisosteres of purine, which exist as two isomers, namely [1,2,4]triazolo[4,3-a][1,3,5]triazine and [1,2,4]triazolo[1,5-a][1,3,5]triazine (Fig. 1), which have been extensively studied as adenosine receptor antagonists,2,3 as well as for other pharmacological activities1,4,5 (Fig. 2). Literature reports suggest that [1,2,4]triazolo[1,5-a][1,3,5]triazine has been exploited extensively in drug discovery as compared to its corresponding isomer. Further, from the literature it is evident that symmetrical disubstituted triazines,6–9 especially morpholine10–12 substituted, have displayed broad pharmacological activities.Open in a separate windowFig. 1Structure of isomers of triazolo–triazine.Open in a separate windowFig. 2Biologically active molecules of [1,2,4]triazolo[4,3-a][1,3,5]triazine (1) and [1,2,4]triazolo[1,5-a][1,3,5]triazine (2, 3, 4).Various synthetic methods have been reported for the C–N bond formation by employing different starting materials13–15via oxidative cyclisation,16 high temperature condition17–19 and/or metal-catalysed reactions.20 However, the current reported protocols were environmentally unfriendly as they suffered from drawbacks such as, multistep, and tedious procedures, use of carcinogenic solvents, high-temperature, expensive and toxic metal-catalysts, and other hazardous reagents.Furthermore, there is very less reported research on these heterocycles, and that can be because of the unavailability of the efficient and cheaper methods. Thus, there is a need to develop new versatile synthetic method for the synthesis of disubstituted triazolotriazine heterocycles of pharmacological interest.In 1970, for the first time Kobe21et al. (scheme a) reported the synthesis of [1,2,4]triazolo[4,3-a][1,3,5]triazine utilizing lead tetraacetate in benzene under reflux conditions (Fig. 3). However, no further Isomerization was carried out and resulted low to moderate yield. Deshpande22et al. reported (scheme b) the reaction of 2-hydrazinyl-1,3,5-triazine with various substituted benzoic acids. The product formed was treated with P2O5, refluxed in xylene for 10h to yield [1,2,4]triazolo[4,3-a][1,3,5]triazine. Further, Isomerization of the resulting product was carried out in 2% methanolic-NaOH solution resulting in poor yields. Recently, Stefano23et al. (scheme c) reported, a multistep protocol by reacting the intermediate with bis(methyl-sulfanyl)methylenecyanamide at 180 °C under N2 for 3h resulting in low yield due to the formation of several side products. In addition no isomerization studies were carried out, and only the [1,2,4]triazolo[1,5-a][1,3,5]triazine analogs were reported.Open in a separate windowFig. 3Different approaches for the synthesis of triazolo triazines.Herein, we report an economical one-pot synthesis of [1,2,4]triazolo[1,5-a][1,3,5]triazine analogs via Dimroth type rearrangement of [1,2,4]triazolo[4,3-a][1,3,5]triazine derivatives. This one pot novel methodology was carried out by reacting readily available, inexpensive starting materials such as substituted aryl/heteroaryl benzaldehydes and substituted 2-hydrazinyl-1,3,5-triazine in methanol (a mild solvent)24 at room temperature giving excellent yields of the desired product. For cyclization reaction, an eco-friendly reagent NBS25 was used and the resulting product was treated with DBU to yield its corresponding desired isomer. To the best of our knowledge this is the first report for the greener synthesis of symmetric disubstituted triazolotriazine heterocycles via Dimroth type rearrangement. We believe that this simple, yet novel methodology could be further exploited by the researchers in pharmaceutical industries and academics settings in drug discovery.Formation of the Schiff base was initiated reacting 4,4′-(6-hydrazinyl-1,3,5-triazine-2,4-diyl)dimorpholine 1a and unsubstituted benzaldehyde as shown in
Entry no.SolventOxidantBaseBase equiv.Time (hour)Yield%
1EtOHNBSDBU1.01668
2DCMNBSDBU1.0160
3DMFNBSDBU1.0160
4MeOHNBSDBU1.01672
5i-PrOHNBSDBU1.016Trace
6H2ONBSDBU1.0160
7MeOHNBS160
8MeOHNBS2%NaOH1.016Trace
9MeOHNBSK2CO31.0160
10MeOHNBSTEA1.0160
11MeOHNBSDABCO1.0160
12MeOHNBSDBU1.5285
13MeOHNBSDBU2.01.580
14MeOHNCSDBU1.5256
15MeOHNISDBU1.5261
16MeOHIBDDBU1.5263
17MeOHKI/I2DBU1.5253
18MeOH/H2ONBSDBU1.5270
Open in a separate windowaConditions: 1a (1 mmol), benzaldehyde (1 mmol), solvent, rt, 20 min, then oxidant (1 mmol), 5 min, rt, then DBU, stir at rt till completion of the reaction.Meanwhile, equivalents of DBU were adjusted (entry 12, 13) to attain the highest yield %. Reaction with 1.5 eq. showed drastic improvement in yields in 2 h whereas 2.0 eq. resulted in good yields with less reaction time. Considering the yield factor (entry 12), the oxidant optimization was achieved (entry 14–17). Using N-chlorosuccinimide (NCS) and N-iodosuccinimide (NIS) (entry 14, 15) offered 56% and 61% yield respectively. When the reaction was performed using phenyliodine(iii) diacetate (PIDA) and KI/I2 (entry 16, 17) it provided 2a in 63% and 53% yields, respectively. Finally, methanol–water and ethanol–water systems in 3 : 1 were used, which gave approximately 70% yield, concluding that entry 12 gives the best result, demanding alcoholic solvents especially methanol as a key factor for Dimroth type rearrangement. Additionally, it was supported by the observation that reaction goes well in methanol, a little worse in ethanol (Fig. 4. The reaction involves a Schiff base formation (II) by 1a and benzaldehydes, the addition of NBS results in oxidative cyclization reaction to produce isomer 1. The addition of DBU in isomer-1 initiates a famous Dimroth type rearrangement, protonation of III results in ring-opening with the formation of unstable intermediate V. It undergoes tautomerism by 1,3 proton shift, bond rotation and proton abstraction by methoxide ion facilitating the intramolecular cyclization to afford the isomer 2. This reaction mechanism is supported by the formation of the Schiff base, isomer-1, and its conversion to isomer-2, which were easily monitored by TLC, isolated, and characterized (ESI). In addition to that, a single crystal of compound 2e was obtained, which further supports the Dimorth type of rearrangement (ESI).Open in a separate windowFig. 4Plausible mechanism of the reaction pathway.Having in hand the optimized conditions, the substrate scope was further explored by using different aldehydes (Fig. 5). The reaction was carried out using 1a with benzaldehydes having electron-donating groups (2a-f) followed by NBS and DBU additions. The reaction was allowed to stir at room temperature till reaction completion, as monitored by TLC, which would approximately take 2 h. The reaction could smoothly give final products in excellent reaction yields (79 to 96%). Electron withdrawing groups such as chlorobenzaldehydes (2g-i) despite the position of substitution gave excellent yields (93–95%). With the 4-bromo and different fluoro-benzaldehydes, the reaction resulted in 2j (89%) and 2k-m (84–90%) with very good yields. Also, reaction afforded 70% and 77% yields with heterocyclic aldehydes such as 3-pyridinecarboxyaldehyde (2n) and thiophene-2-carbaldehyde (2o), respectively.Open in a separate windowFig. 5Substrate scope for different aldehydes.The gram scale reaction was performed to further validate this synthetic procedure. The reaction was carried out using 1a (1 g) with benzaldehyde (0.38 g) and stirred for 30 min. The NBS (1.26 g, 1 eq.) was added slowly and stirred till new spot appeared on TLC followed by the slow addition of DBU (1.5 eq.) resulted in isomerisation to give 2a in good yields (1.1 g, 84%) (ESI).Encouraged from the potency of the reaction to generate in good to excellent yields [1,2,4]triazolo[1,5-a][1,3,5]triazine analogues, we shifted our investigation to isolate [1,2,4]triazolo[4,3-a][1,3,5]triazine derivatives (isomer-1) as described in Fig. 6. Different aldehydes were reacted with hydrazinyl-1,3,5-triazine analogs (1a, 3a, and 4a) and followed by the addition of NBS, stirred at room temperature till the completion of reaction as monitored by TLC. Compound 1a on reaction with 4-bromobenzaldehyde and NBS resulted in 1b with 90% yield. Similarly, 3a with 4-bromobenzaldehydes and thiophene-2-carbaldehyde afforded 3b and 3c with 84% and 83% yields, respectively. The same reaction was carried out with 4a and 4-bromobenzaldehyde bearing an electron-withdrawing group gave 3d with 87% yield. Further, 4a with aldehydes bearing electron-donating groups resulted 4c and 4d, with 88% and 84% yields, respectively (Fig. 7).Open in a separate windowFig. 6Substrate scope for [1,2,4]triazolo[4,3-a][1,3,5]triazine analogues.Open in a separate windowFig. 7Substrate scope for different disubstituted triazinyl-hydrazine and aldehydes.With these promising results, we explored the scope of aldehydes and 2-hydrazinyl-1,3,5-triazine analogs for the synthesis of [1,2,4]triazolo[1,5-a][1,3,5]triazine derivatives. Compound 3a, when reacted with different aldehydes and employing the optimized protocols gave 5a-e with excellent yields (86–92%) in 2–4 h. Similarly compounds 6a, 6b and 6c, synthesized from 4a also afforded excellent yields 88%, 86% and 90% respectively. Further, substituted cinnamaldehydes were also explored and reacted with 1a followed by the addition of NBS and DBU resulted in 7a and 7b in appreciable yields of 84% and 82%, respectively.Finally, we investigated both the isomers (3b and 5d) spectroscopically, to elucidate the change in proton chemical shifts during rearrangement. Interestingly, it was observed that the proton chemical shift for 5d at the 7th position (Fig. 6) was not affected. However, 5th position of 5d suffers a downfield shift due to change in its electronic environment as compared to its corresponding isomer 3b. In general, the proton chemical shifts for the substitution at 5th position and for the aromatic region was found to be more for isomer-2 as compared to isomer-1.  相似文献   
10.
Equivalent occupancy of dopamine D1 and D2 receptors with clozapine: differentiation from other atypical antipsychotics     
Tauscher J  Hussain T  Agid O  Verhoeff NP  Wilson AA  Houle S  Remington G  Zipursky RB  Kapur S 《The American journal of psychiatry》2004,161(9):1620-1625
OBJECTIVE: Clozapine, the prototype of atypical antipsychotics, remains unique in its efficacy in the treatment of refractory schizophrenia. Its affinity for dopamine D(4) receptors, serotonin 5-HT(2A) receptor antagonism, effects on the noradrenergic system, and its relatively moderate occupancy of D(2) receptors are unlikely to be the critical mechanism underlying its efficacy. In an attempt to elucidate the molecular/synaptic mechanism underlying clozapine's distinctiveness in refractory schizophrenia, the authors studied the in vivo D(1) and D(2) receptor profile of clozapine compared with other atypical antipsychotics. METHOD: Positron emission tomography with the radioligands [(11)C]SCH23390 and [(11)C]raclopride was used to investigate D(1) and D(2) receptor occupancy in vivo in 25 schizophrenia patients receiving atypical antipsychotic treatment with clozapine, olanzapine, quetiapine, or risperidone. RESULTS: Mean striatal D(1) occupancies ranged from 55% with clozapine to 12% with quetiapine (rank order: clozapine > olanzapine > risperidone > quetiapine). The striatal D(2) occupancy ranged from 81% with risperidone to 30% with quetiapine (rank order: risperidone > olanzapine > clozapine > quetiapine). The ratio of striatal D(1)/D(2) occupancy was significantly higher for clozapine (0.88) relative to olanzapine (0.54), quetiapine (0.41), or risperidone (0.31). CONCLUSIONS: Among the atypical antipsychotics, clozapine appears to have a simultaneous and equivalent occupancy of dopamine D(1) and D(2) receptors. Whether its effect on D(1) receptors represents agonism or antagonism is not yet clear, as this issue is still unresolved in the preclinical arena. This distinctive effect on D(1)/D(2) receptors may be responsible for clozapine's unique effectiveness in patients with schizophrenia refractory to other typical and atypical antipsychotics.  相似文献   
1 [2] [3] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号