首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88篇
  免费   3篇
儿科学   1篇
基础医学   17篇
临床医学   4篇
内科学   18篇
皮肤病学   1篇
神经病学   12篇
外科学   3篇
预防医学   5篇
眼科学   21篇
药学   7篇
肿瘤学   2篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2013年   2篇
  2012年   6篇
  2011年   5篇
  2008年   3篇
  2007年   3篇
  2006年   6篇
  2005年   3篇
  2004年   7篇
  2003年   11篇
  2002年   5篇
  2001年   6篇
  2000年   5篇
  1999年   8篇
  1998年   2篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1988年   3篇
  1987年   2篇
  1983年   1篇
  1980年   1篇
  1968年   1篇
  1966年   1篇
排序方式: 共有91条查询结果,搜索用时 78 毫秒
1.
Electrical coupling is widespread in developing nervous systems and plays a major role in circuit formation and patterning of activity. In most reported cases, such coupling between rhythmogenic neurons tends to synchronize and enhance their oscillatory behavior, thereby producing monophasic rhythmic output. However, in many adult networks, such as those responsible for rhythmic motor behavior, oscillatory neurons are linked by synaptic inhibition to produce rhythmic output with multiple phases. The question then arises whether such networks are still able to generate multiphasic output in the early stage of development when electrical coupling is abundant. A suitable model for addressing this issue is the lobster stomatogastric nervous system (STNS). In the adult animal, the STNS consists of three discrete neural networks that are comprised of oscillatory neurons interconnected by reciprocal inhibition. These networks generate three distinct rhythmic motor patterns with large amplitude neuronal oscillations. By contrast, in the embryo the same neuronal population expresses a single multiphasic rhythm with small-amplitude oscillations. Recent findings have revealed that adult-like network properties are already present early in the embryonic system but are masked by an as yet unknown mechanism. Here we use computer simulation to test whether extensive electrical coupling may be involved in masking adult-like properties in the embryonic STNS. Our basic model consists of three different adult-like STNS networks that are built of relaxation oscillators interconnected by reciprocal synaptic inhibition. Individual model cells generate slow membrane potential oscillations without action potentials. The introduction of widespread electrical coupling between members of these networks dampens oscillation amplitudes and, at moderate coupling strengths, may coordinate neuronal activity into a single rhythm with different phases, which is strongly reminiscent of embryonic STNS output. With a further increase in coupling strength, the system reaches one of two final states depending on the relative contribution of inhibition and inherent oscillatory properties within the networks: either fully synchronized and dampened oscillations, or a complete collapse of activity. Our simulations indicate that, beginning from either of these two states, the emergence of distinct adult networks during maturation may arise from a developmental decrease in electrical coupling that unmasks preexisting adult-like network properties.  相似文献   
2.
Phylogenetic comparison can reveal general principles governing the organization and neuromodulation of neural networks. Suitable models for such an approach are the pyloric and gastric motor networks of the crustacean stomatogastric ganglion (STG). These networks, which have been well studied in several species, are extensively modulated by projection neurons originating in higher-order ganglia. Several of these have been identified in different decapod species, including the paired modulatory proctolin neuron (MPN) in the crab Cancer borealis [Nusbaum & Marder (1989) J. Neurosci., 9,1501-1599; Nusbaum & Marder (1989), J. Neurosci., 9, 1600-1607] and the apparently equivalent neuron pair, called GABA (gamma-aminobutyric acid) neurons 1 and 2 (GN1/2), in the lobster Homarus gammarus [Cournil et al. (1990) J. Neurocytol., 19, 478-493]. The morphologies of MPN and GN1/2 are similar, and both exhibit GABA-immunolabelling. However, unlike MPN, GN1/2 does not contain the peptide transmitter proctolin. Instead, GN1/2, but not MPN, is immunoreactive for the neuropeptides related to cholecystokinin (CCK) and FLRFamide. Nonetheless, GN1/2 excitation of the lobster pyloric rhythm is similar to the proctolin-mediated excitation of the crab pyloric rhythm by MPN. In contrast, GN1/2 and MPN both use GABA but produce opposite effects on the gastric mill rhythm. While MPN stimulation produces a GABA-mediated suppression of the gastric rhythm [Blitz & Nusbaum (1999) J. Neurosci., 19, 6774-6783], GN1/2 activates or enhances gastric rhythmicity. These results highlight the care needed when generalizing neuronal organization and function across related species. Here we show that the 'same' neuron in different species does not contain the same neurotransmitter complement, nor does it exert all of the same effects on its postsynaptic targets. Conversely, a different transmitter phenotype is not necessarily associated with a qualitative change in the way that a modulatory neuron influences target network activity.  相似文献   
3.
Here we report a double labelling method for correlative confocal and electron microscopy (EM) which allows selective characterisation of structural relationships between two single identified neurons in the same preparation. Using the lobster stomatogastric nervous system, we labelled pairs of identified, synaptically-connected neurons by intracellular injection of Lucifer Yellow (LY) in one neuron and a mixture of Rhodamine (Rdh) and Horseradish Peroxidase (HRP) in its partner. First, whole-mounts of LY- and Rdh-stained neurons were visualized using laser scanning confocal microscopy (LSCM) in order to isolate neuropilar regions of possible synaptic contact. Second, after conventional treatment for electron microscopy (LY was revealed with immunogold and HRP with DAB), areas of close appositions were viewed in EM. This technique allowed us to determine all the regions of close contact between two cells, and then to use electron microscopy to determine the presence or absence of synaptic contact within each of these restricted areas. These techniques enabled us to show that there were few areas of apposition and that only an extremely small proportion of these areas was in fact regions of synaptic contact between the two labelled neurons.  相似文献   
4.
PURPOSE: The well-documented fact that visual acuity and contrast sensitivity in amblyopia are attenuated at high spatial frequencies predicts that amblyopes should perceive objects as blurred, because they do not have the high spatial frequency information necessary to represent sharp edges adequately. In the current study, the representation of blur in amblyopia with blur-discrimination and blur-matching tasks was explored in a series of experiments. METHODS: Monocular blur-discrimination thresholds were measured in a spatial two-alternative forced-choice procedure. Observers were required to discriminate which edge (right or left) appeared to be the lesser blurred. Observers also interocularly matched edges that were identical with those used in the blur-discrimination tasks, with the exception that they were viewed dichoptically at all times. RESULTS: Blur-discrimination thresholds were elevated in both the amblyopic and fellow fixing eyes but were within the normal range for interocular matching thresholds. CONCLUSIONS: The results suggest that blur is veridically represented in the amblyopic visual system. The surprising result is that all amblyopes, even those with the most severe visual loss, veridically matched all blurred edges, including the sharpest ones. This implies that amblyopes are able to represent levels of blur that are defined by spatial structure beyond their resolution limit.  相似文献   
5.
Beta-lapachone (beta-Lap) triggers apoptosis in a number of human breast and prostate cancer cell lines through a unique apoptotic pathway that is dependent upon NQO1, a two-electron reductase. Recently, our laboratory showed that beta-lap-exposed MCF-7 cells exhibited an early increase in intracellular cytosolic Ca(2+) from endoplasmic reticulum stores, and that BAPTA-AM (an intracellular Ca(2+) chelator) blocked these early increases and partially inhibited all aspects of beta-lap-induced apoptosis. We now show that exposure of NQO1-expressing breast cancer cells to beta-lap stimulates a unique proteolytic apoptotic pathway involving mu-calpain activation. No apparent activation of m-calpain was noted. Upon activation, mu-calpain translocated to the nucleus concomitant with specific nuclear proteolytic events. Apoptotic responses in beta-lap-exposed NQO1-expressing cells were significantly delayed and survival enhanced by exogenous over-expression of calpastatin, a natural inhibitor of mu- and m-calpains. Furthermore, purified mu-calpain cleaved PARP to a unique fragment (approximately 60 kDa), not previously reported for calpains. We provide evidence that beta-lap-induced, mu-calpain-stimulated apoptosis does not involve any known apoptotic caspases; the activated fragments of caspases were not observed after beta-lap exposures, nor were there any changes in the pro-enzyme forms as measured by Western blot analyses. The ability of beta-lap to trigger an apparently novel, p53-independent, calpain-mediated apoptotic cell death further support the development of this drug for improved breast cancer therapy.  相似文献   
6.
Functional visual loss in amblyopia and the effect of occlusion therapy.   总被引:6,自引:0,他引:6  
PURPOSE: The aim of this study was to define the nature of functional visual loss in amblyopia and to identify those subjects whose amblyopia is chiefly due to one or more of the following deficits: abnormal contour interaction, abnormal eye movements, abnormal contrast perception, or positional uncertainty. METHODS: Fifty amblyopic children with a mean age of 5.6+/-1.3 years were referred from diverse sources. In addition to routine orthoptic and optometric evaluation the principal visual deficits in the amblyopic eye of each subject were identified using the following measures of visual acuity: high contrast linear, single optotype, repeat letter and low contrast linear, plus Vernier and displacement thresholds. These measures were repeated as the children underwent a prescribed occlusion therapy regime, after parental consent. RESULTS: All amblyopic subjects demonstrated a functional loss in each of the tests used, and occlusion therapy appeared to improve all aspects of the amblyopia. High contrast visual acuity was not always the primary deficit in visual function, and when amblyopic subjects were divided according to their primary visual loss, this visual function was found to show the greatest improvement with treatment. CONCLUSIONS: These results suggest that to successfully identify the primary visual deficit and monitor the success of occlusion therapy it is necessary to assess other aspects of visual function in amblyopia.  相似文献   
7.
We have explored the synaptic and cellular mechanisms by which a single primary mechanosensory neuron, the anterior gastric receptor (AGR), reconfigures motor output of the gastric mill central pattern generator (CPG) in the stomatogastric nervous system (STNS) of the lobster Homarus gammarus. AGR is activated in vivo by contraction of the medial tooth protractor muscle gm1 and accesses the gastric CPG via excitation of two in-parallel interneurons, the excitatory commissural gastric (CG) and the inhibitory gastric inhibitor (GI). In the spontaneously active STNS in vitro, weak firing of AGR in time with gastric mill motoneurons (GM) reinforces an ongoing type I gastric mill rhythm in which all gastric teeth power-stroke motoneurons are synchronously active. With strong AGR firing, these phase relationships switch abruptly to a type II pattern in which lateral and medial teeth power-stroke motoneurons fire in antiphase. Our results suggest that these bimodal actions on the gastric mill rhythm depend on the balance of firing of the CG and GI interneurons and that selection of the pathway resides in their different postsynaptic sensitivities to AGR. Whereas high intrinsic firing rates of the CG neuron ensure that the excitatory pathway predominates during low levels of sensory input, strong synaptic facilitation in the GI neuron favors the inhibitory pathway during high levels of receptor activity. Feedback from a single mechanosensory neuron is thus able, in an activity-dependent manner, to specify different motor programs from a single central pattern-generating network.  相似文献   
8.

Purpose

The purpose of this work is to demonstrate rapid intradermal delivery of up to 1.5 mL of formulation using a hollow microneedle delivery device designed for self-application.

Methods

3M??s hollow Microstructured Transdermal System (hMTS) was applied to domestic swine to demonstrate delivery of a variety of formulations including small molecule salts and proteins. Blood samples were collected after delivery and analyzed via HPLC or ELISA to provide a PK profile for the delivered drug. Site evaluations were conducted post delivery to determine skin tolerability.

Results

Up to 1.5 mL of formulation was infused into swine at a max rate of approximately 0.25 mL/min. A red blotch, the size of the hMTS array, was observed immediately after patch removal, but had faded so as to be almost indistinguishable 10 min post-patch removal. One-mL deliveries of commercial formulations of naloxone hydrochloride and human growth hormone and a formulation of equine anti-tetanus toxin were completed in swine. With few notable differences, the resulting PK profiles were similar to those achieved following subcutaneous injection of these formulations.

Conclusions

3M??s hMTS can provide rapid, intradermal delivery of 300?C1,500 µL of liquid formulations of small molecules salts and proteins, compounds not typically compatible with passive transdermal delivery.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号