首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   2篇
基础医学   9篇
临床医学   1篇
内科学   4篇
  2021年   1篇
  2018年   1篇
  2014年   1篇
  2010年   1篇
  2008年   2篇
  2006年   2篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1995年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
Eph receptor tyrosine kinases and their ligands, the ephrins, are known to play an important role in regulating cell migration and targeting in neuronal and endothelial cells. Recently, it has been shown that lymphoid cells also express Eph receptors, raising the possibility that Eph receptors may similarly regulate lymphocyte migration. Chemotaxis in response to soluble chemokine factors is an essential facet of T cell biology. We demonstrate here that T cell chemotaxis in response to both the stromal cell-derived factor (SDF)-1alpha and macrophage inflammatory protein 3beta chemokines is modulated by costimulation with ephrins. Both ephrin-A and ephrin-B ligands were found to modify the chemotactic responses of a T cell line and primary T cells. Ephrin-A1, in particular, strongly inhibited chemotaxis. In accordance with the tyrosine kinase activity of EphA receptors, ephrin-A1 stimulation induced rapid intracellular tyrosine phosphorylation in T cells. Although strongly inhibiting chemotaxis, ephrin-A1 costimulus did not affect many of the signaling events downstream of the SDF-1alpha receptor CXCR4, including calcium flux and activation of MAPK. Rather, ephrin-A1 altered the balance of small G protein activity in T cells. Ephrin-A1 stimulation prevented SDF-1alpha-induced activation of cdc42, while simultaneously inducing rho activation. Ultimately, ephrin-A1 was found to inhibit chemokine-induced actin polymerization, thereby blocking migration. Ubiquitous ephrin expression in vivo creates enormous potential for T cells to encounter these ligands, suggesting that Eph receptors and ephrins may be important regulators of T cell migration.  相似文献   
5.
6.
Cohen S  Dadi H  Shaoul E  Sharfe N  Roifman CM 《Blood》1999,93(6):2013-2024
Protein tyrosine phosphatases act in conjunction with protein kinases to regulate the tyrosine phosphorylation events that control cell activation and differentiation. We have isolated a previously undescribed human phosphatase, Lyp, that encodes an intracellular 105-kD protein containing a single tyrosine phosphatase catalytic domain. The noncatalytic domain contains four proline-rich potential SH3 domain binding sites and an NXXY motif that, if phosphorylated, may be recognized by phosphotyrosine binding (PTB) domains. Comparison of the Lyp amino acid sequence with other known proteins shows 70% identity with the murine phosphatase PEP. The human Lyp gene was localized to chromosome 1p13 by fluorescence in situ hybridization analysis. We also identified an alternative spliced form of Lyp RNA, Lyp2. This isoform encodes a smaller 85-kD protein with an alternative C-terminus. The lyp phosphatases are predominantly expressed in lymphoid tissues and cells, with Lyp1 being highly expressed in thymocytes and both mature B and T cells. Increased Lyp1 expression can be induced by activation of resting peripheral T lymphocytes with phytohemagglutinin or anti-CD3. Lyp1 was found to be constitutively associated with the proto-oncogene c-Cbl in thymocytes and T cells. Overexpression of lyp1 reduces Cbl tyrosine phosphorylation, suggesting that it may be a substrate of the phosphatase. Thus, Lyp may play a role in regulating the function of Cbl and its associated protein kinases.  相似文献   
7.
8.
Roifman CM  Zhang J  Chitayat D  Sharfe N 《Blood》2000,96(8):2803-2807
Both in vitro and in vivo studies established that interleukin 7 (IL-7) is essential for differentiation of immature T cells and B cells but not natural killer (NK) cells in the mouse. In humans, although both T-cell and B-cell progenitors express the functional IL-7 receptor that consists of IL-7R alpha and the gamma common (gamma c) chain, this lymphocyte receptor system is critical for T lineage but not for B lineage development. Indeed, complete gamma c deficiency like IL-7R alpha deficiency results in the arrest of T-cell but not B-cell development (T(-)B(+) SCID). However, partial deficiency of gamma c caused by missense mutations results in a T(+)B(+) phenotype and a delay of clinical presentation. It was therefore plausible to assume that partial deficiency of IL-7R alpha, like partial gamma c deficiency may lead to a milder clinical and immunologic phenotype. A P132S mutation in the IL-7R alpha was identified in 3 patients with severe combined immunodeficiency (SCID) within an extensively consanguineous family. Substitution of proline with serine in the extracellular portion of IL-7R alpha did not affect IL-7R alpha messenger RNA (mRNA) and protein expression, but severely compromised affinity to IL-7, resulting in defective signal transduction. In response to IL-7 stimulation, Jak-3 phosphorylation was markedly reduced in both patient cells as well as in COS cells reconstituted with mutant IL-7R alpha. Surprisingly, this partial deficiency of IL-7R alpha resulted in a severe phenotype, including markedly reduced circulating T cells while sparing B-cell numbers similar to gamma c chain deficiency. However, unlike the previously reported cases, serum immunoglobulins were virtually absent. Further, unlike gamma c deficiency, NK cell numbers and function was preserved. Despite the partial deficiency, clinical presentation was indistinguishable from a complete gamma c deficiency, including severe and persistent viral and protozoal infections and failure to thrive. Unlike partial gamma c deficiency, a partial deficiency of IL-7R alpha results in an arrest of T-cell development, leading to typical severe combined immunodeficiency. This underscores the critical role of IL-7R alpha chain in the differentiation of T cells. (Blood. 2000;96:2803-2807)  相似文献   
9.
10.
One of the most common human immunodeficiencies is an X-linked condition arising from mutations of the gamma subunit of the interleukin-2 receptor (IL-2Rgamma). The IL-2Rgamma protein is one chain of the heterotrimeric (alpha, beta, gamma) IL-2 receptor, but also participates in the formation of the IL-4, 7, 9, and 15 receptor complexes. The diagnosis of X-linked SCID is usually relatively simple due to the distinctive immunological presentation; IL-2Rgamma-deficient patients typically lacking mature T lymphocytes (T-B+). However, it is becoming clear that this merely represents one extreme of a potential range of clinical presentations. We describe here a novel mutation of the human IL-2Rgamma chain (R222C) resulting in an unusual immunological phenotype. Although clinically immunodeficient, this patient has normal numbers of peripheral T and B cells, responds normally to mitogenic stimuli, and unusually, has a normal thymus gland. This IL-2Rgamma mutation is distinctive in that the protein is sufficiently stable to be expressed at the cell surface. While the T cell receptor repertoire appears complete, suggesting normal T cell differentiation occurs, patient T cells demonstrate a reduced ability to bind IL-2 and this appears sufficient to cause a deficiency in their ability to participate in antigenic responses. Early clinical recognition of this phenotype is critical as a delay in diagnosis may result in a fatal infection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号