首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   3篇
妇产科学   3篇
基础医学   6篇
临床医学   2篇
内科学   15篇
皮肤病学   2篇
神经病学   1篇
外科学   4篇
预防医学   3篇
药学   6篇
肿瘤学   1篇
  2023年   1篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2014年   3篇
  2013年   1篇
  2012年   3篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
  2008年   6篇
  2007年   2篇
  2002年   2篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1995年   1篇
  1991年   1篇
  1985年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有43条查询结果,搜索用时 15 毫秒
1.
2.
3.
Leucyl aminopeptidases (LAP) from different parasitic organisms are attracting attention as relevant players in parasite biology, and consequently being considered as candidates for drug and vaccine design. In fact, the highest protection level achieved in ruminant immunization by a native antigen was previously reported by us, using a purified LAP as immunogen in a sheep trial against fasciolosis. Here, we report the cloning of a full-length cDNA from adult F. hepatica encoding a member of the M17 family of LAP (FhLAP) and functional expression and characterization of the corresponding enzyme. FhLAP was closely related to Schistosoma LAPs, but interestingly distant from their mammalian host's homologues, and was expressed in all stages of the parasite life cycle. The recombinant enzyme, functionally expressed in Escherichia coli, showed a marked amidolytic preference against the synthetic aminopeptidase substrate l-leucine-7-amino-4-methylcoumarin (Leu-AMC) and was also active against Cys-AMC and Met-AMC. Both native and recombinant enzyme were stimulated by the addition of divalent cations predominantly Mn(2+), and strongly inhibited by bestatin and cysteine. Physico-chemical properties, localization by immunoelectron microscopy, MALDI-TOF analysis, and cross-reactivity of anti-rFhLAP immune serum demonstrated that the recombinant enzyme was identical to the previously purified gut-associated LAP from adult F. hepatica. Vaccination trials using rFhLAP for rabbit immunization showed a strong IgG response and a highly significant level of protection after experimental infection with F. hepatica metacercariae, confirming that FhLAP is a relevant candidate for vaccine development.  相似文献   
4.
5.
Until recently, a capacity for apoptosis and synthesis of nitric oxide *NO) were viewed as exclusive to multicellular organisms. The existence of these processes in unicellular parasites was recently described, with their biological significance remaining to be elucidated. We have evaluated L-arginine metabolism in Trypanosoma cruzi in the context of human serum-induced apoptotic death. Apoptosis was evidenced by the induction of DNA fragmentation and the inhibition of [3H]thymidine incorporation, which were inhibited by the caspase inhibitor Ac-Asp-Glu-Val-aspartic acid aldehyde (DEVD-CHO). In T. cruzi exposed to death stimuli, supplementation with L-arginine inhibited DNA fragmentation, restored [3H]thymidine incorporation, and augmented parasite *NO production. These effects were inhibited by the *NO synthase inhibitor N(omega)-nitroarginine methyl ester (L-NAME). Exogenous *NO limited DNA fragmentation but did not restore proliferation rates. Because L-arginine is also a substrate for arginine decarboxylase (ADC), and its product agmatine is a precursor for polyamine synthesis, we evaluated the contribution of polyamines to limiting apoptosis. Addition of agmatine, putrescine, and the polyamines spermine and spermidine to T. cruzi sustained parasite proliferation and inhibited DNA fragmentation. Also, the ADC inhibitor difluoromethylarginine inhibited L-arginine-dependent restoration of parasite replication rates, while the protection from DNA fragmentation persisted. In aggregate, these results indicate that T. cruzi epimastigotes can undergo programmed cell death that can be inhibited by L-arginine by means of (i) a *NO synthase-dependent *NO production that suppresses apoptosis and (ii) an ADC-dependent production of polyamines that support parasite proliferation.  相似文献   
6.
The potential of different parasite proteinases for use as vaccine candidates against fascioliasis in sheep was studied by vaccinating animals with the cathepsin L proteinases CL1 and CL2 and with leucine aminopeptidase (LAP) purified from adult flukes. In the first trial, sheep were immunized with CL1 or CL2 and the mean protection levels obtained were 33 and 34%, respectively. Furthermore, a significant reduction in egg output was observed in sheep vaccinated either with CL1 (71%) or with CL2 (81%). The second trial was performed to determine the protective potential of the two cathepsin L proteinases assayed together, as well as in combination with LAP, and of LAP alone. The combination of CL1 and CL2 induced higher levels of protection (60%) than those produced when these enzymes were administered separately. Those sheep that received the cocktail vaccine including CL1, CL2, and LAP were significantly protected (78%) against metacercarial challenge, but vaccination with LAP alone elicited the highest level of protection (89%). All vaccine preparations induced high immunoglobulin G titers which were boosted after the challenge infection, but no correlations between antibody titers and worm burdens were found. However, the sera of those animals vaccinated with LAP contained LAP-neutralizing antibodies. Reduced liver damage, as assessed by the level of the liver enzyme gamma-glutamyl transferase, was observed in the groups vaccinated with CL1, CL2, and LAP or with LAP alone.  相似文献   
7.
8.
9.
Post-hysterectomy fallopian tube prolapse   总被引:3,自引:0,他引:3  
Post-hysterectomy fallopian tube prolapse is a rare complication with only 80 cases described since 1902. Symptoms are non-specific and often of delayed onset. Final diagnosis is confirmed by vaginal biopsy with salpingectomy being the treatment of choice, preferably performed laparoscopically. Following surgery, complete symptom resolution is usually observed and no recurrence has been reported.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号