首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   2篇
妇产科学   1篇
基础医学   2篇
内科学   3篇
神经病学   10篇
药学   4篇
  2022年   1篇
  2021年   1篇
  2014年   1篇
  2012年   2篇
  2011年   1篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2002年   2篇
  2001年   3篇
  2000年   2篇
  1995年   1篇
排序方式: 共有20条查询结果,搜索用时 31 毫秒
1.
Background and study aimTherapeutic drug monitoring (TDM) through measurement of infliximab (IFX) trough levels and antibodies to infliximab (ATI) is performed to guide IFX intensification strategies and improve its efficacy. We conducted this study to explore the relationship between clinical and endoscopic/radiological remission and IFX and ATI levels in patients with inflammatory bowel disease (IBD) treated with IFX and to evaluate the appropriateness of treatment decision post TDM.Patients and methodsThis was a cross-sectional study of a cohort of adult patients with IBD. Serum IFX trough concentrations and ATI were measured.ResultsA total of 129 patients [104] with ulcerative colitis (UC) and 25 with Crohn’s disease (CD)] were included in this study, of whom 61.2% were men. The mean disease duration was 6.7 years, and 72% of patients with UC had extensive colitis. The mean serum IFX trough level was 4.1 µg/mL; the IFX trough levels were subtherapeutic in 75 patients (58%), therapeutic in 37 patients (29%), and supratherapeutic in 17 patients (13%). Positivity to ATI was found in 16 patients (12.4%). Only 43 patients (33.3%) underwent an appropriate change in therapy after TDM, patients with penetrating CD disease had low IFX levels and higher C-reactive protein levels at 12 months before TDM.ConclusionsPatients with IBD with therapeutic IFX levels tend to have increased endoscopic/radiological remission rates. However, an appropriate change in management based on TDM was absent in the majority of patients, potentially reflecting the need to have a dashboard to support and guide clinicians in decision-making.  相似文献   
2.
BACKGROUND: Recent studies have demonstrated spontaneous and prolonged hyperthermia following stroke in both humans and rodents. However, a full characterization of these pyretic changes and the effects of anti-pyretic drugs on outcome is not available. METHODS: The aims of this study were to monitor conscious body temperature (n=10 per group) using programmable microchips for up to 24 h in rats following either permanent (p) or 90 min transient (t) middle cerebral artery occlusion (MCAO) or sham surgery, and to evaluate the relationship to hypothalamic damage. Also, the effects of anti-pyretic drug therapy on body temperature and infarct volume were evaluated in animals treated with vehicle, optimal doses of either aspirin or paracetamol (250 mg/kg i.p.) following pMCAO (n=10 per group). RESULTS: At 1 h, body temperature significantly (P<0.01) increased to 38.6+/-0.2 degrees C following tMCAO and 38.9+/-0.1 degrees C following pMCAO compared with sham-operated animals (37.1+/-0.1 degrees C). Sustained hyperthermia (> or =38.1 degrees C) was observed for up to 24 h following pMCAO but approached baseline within 30 min (37.6+/-0.2 degrees C) following tMCAO with reperfusion. The post-stroke pyrexia was related to the degree of ischemia where hypothalamic damage was observed in (80%) of the animals undergoing pMCAO and (0%) in the tMCAO group (P<0.05). Treatment with paracetamol (250 mg/kg i.p.) significantly attenuated (P<0.05) but did not normalize core body temperature up to 2 h (38.2+/-0.4 degrees C) compared with vehicle treated animals (39.3+/-0.1 degrees C). Aspirin had no effect on temperature under these conditions. Hypothalamic damage and lesion volume were not different between animals treated with paracetamol (253.3+/-8.5 mm(3)), aspirin (264.0+/-11.6 mm(3)) or vehicle (274.4+/-8.2 mm(3)). CONCLUSIONS: This study is the first to demonstrate the utility of programmable microchips to monitor serial changes in post-stroke hyperthermia. The sustained post-stroke pyrexia and negative effects of antipyretic treatment may be attributed to the extensive hypothalamic injury suggesting that better pharmacologic approaches to reduce body temperature should be identified and evaluated for brain protection in severe experimental stroke.  相似文献   
3.
Chronic nicotine exposure, in smokers or in experimental rodents administered nicotine, produces elevated levels of nicotinic acetylcholine receptors in several brain regions. However, there are few data on up-regulation of receptors in specific neuronal subtypes. We tested whether functional up-regulation of nicotinic responses occurs in cultured GABAergic neurons of the ventral midbrain. Fura-2 measurements of nicotinic responses were made on ventral midbrain neurons from knock-in mice heterozygous for the alpha4-M2 domain Leu9'Ala mutation, which confers nicotine hypersensitivity. Chronic nicotine exposure at a concentration (10 nM for 3 days) that activates only the hypersensitive alpha4* (Leu9'Ala) receptors, but not wild-type receptors, resulted in significant potentiation of ACh (100 microM)-elicited responses. Experiments were also performed on midbrain neuronal cultures heterozygous for the alpha4* (Leu9'Ala) mutation as well as for a GFP protein fused to a GABA transporter that reliably reveals GABAergic neurons. In cultures chronically treated with 10nM nicotine, there was significantly increased alpha4* nicotinic-induced Ca(2+) influx elicited by low concentration of ACh (3 microM). Furthermore, chronic exposure to the competitive antagonist dihydro-beta-erythroidine, but not to the noncompetitive antagonist mecamylamine, induced up-regulation of ACh elicited nicotinic responses. These results suggest that occupation of alpha4* nicotinic receptor binding site(s), at the interface between two subunits, is sufficient to promote assembly and/or up-regulation of functional receptors in GABAergic neurons. Up-regulation in neurons is both "cell-autonomous", occurring at the cell itself, and "receptor autonomous", occurring at the receptor itself, and may be a thermodynamic necessity of ligand-protein interactions.  相似文献   
4.
An in vitro model of spinal cord injury was developed to study the pathophysiology of posttraumatic axonal dysfunction. A 25 mm length of thoracic spinal cord was removed from the adult male rat (n = 27). A dorsal column segment was isolated and pinned in a recording chamber and superfused with oxygenated (95%O2/5% CO2) Ringer. The cord was stimulated with a bipolar electrode, while two point responses were recorded extracellularly. Injury was accomplished by compression with a modified aneurysm clip which applied a 2 g force for 15 s. With injury the compound action potential (CAP) amplitude decreased to 53.7 ± 5.4% (P < 0.001), while the latency increased to 115.6 ± 3.1% (P < 0.0025) of control values. The absolute refractory period increased with injury from 1.7 ± 0.1 ms to 2.1 ± 0.1 ms (P < 0.001). With train stimulation (200 and 400 Hz), injured axons showed evidence of high frequency conduction failure (P < 0.05). The infusion of 5 mM 4-aminopyridine (4-AP), a blocker of voltage-sensitive ‘fast’ K channels confined to internodal regions, resulted in broadening of the CAP of injured axons to 114.9 ± 3.1% of control (P < 0.05). Ultrastructural analysis of the injured dorsal column segments revealed marked axonal and myelin pathology, including considerable myelin disruption.In conclusion, we have developed and characterized an in vitro model of mammalian spinal cord injury which simulates many of the features of in vivo trauma. Injured axons display characteristic changes in physiological function including a shift in refractory period and high frequency conduction failure. The ultrastructural data and response of injured axons to 4-AP suggest that myelin disruption with exposure of ‘fast’ K+ channels contributes to posttraumatic axonal dysfunction.  相似文献   
5.
The medial habenula (MHb) exhibits exceptionally high levels of nicotinic acetylcholine receptors (nAChRs), but it remains unclear whether all expressed nAChR subunit mRNAs are translated to form functional receptors. In particular α4 subunits have not been reported to have any functional role, despite strong α4 mRNA expression in the ventrolateral MHb. We studied a strain of knock-in mice expressing fluorescent α4 nAChRs (α4YFP), as well as a knock-in strain expressing hypersensitive α4 nAChRs (α4L9′A). In α4YFP mice, there was strong fluorescence in the ventrolateral MHb. In hypersensitive α4L9′A mice, injections of a low dose of nicotine (0.1 mg/kg) led to strong c-fos expression in only the ventrolateral region of the MHb, but not in the MHb of wild-type (WT) mice. In MHb slice recordings, ventrolateral neurons from α4L9′A mice, but not from WT mice, responded robustly to nicotine (1 μM). Neurons in the medial aspect of the MHb had >10-fold smaller responses. Thus α4 nAChRs contribute to the selective activation of a subset of MHb neurons. Subunit composition analysis based on gain-of-function knock-in mice provides a useful experimental paradigm.  相似文献   
6.
Dysfunction of surviving axons which traverse the site of spinal cord injury (SCI) has been linked to altered sensitivity to the K+ channel blocker 4-aminopyridine (4-AP) and appears to contribute to post-traumatic neurological deficits although the underlying mechanisms remain unclear. In this study, sucrose gap electrophysiology in isolated dorsal column strips, Western blotting and confocal immunofluorescence microscopy were used to identify the K+ channels associated with axonal dysfunction after chronic (6-8 weeks postinjury) clip compresssion SCI of the thoracic cord at T7 in rats. The K+ channel blockers 4-AP (200 microM, 1 mM and 10 mM) and alpha-dendrotoxin (alpha-DTX, 500 nM) resulted in a significant relative increase in the amplitude and area of compound action potentials (CAP) recorded from chronically injured dorsal column axons in comparison with control noninjured preparations. In contrast, TEA (10 mM) and CsCl (2 mM) had similar effects on injured and control spinal cord axons. Western blotting and quantitative immunofluorescence microscopy showed increased expression of Kv1.1 and Kv1.2 K+ channel proteins on spinal cord axons following injury. In addition, Kv1.1 and Kv1.2 showed a dispersed staining pattern along injured axons in contrast to a paired juxtaparanodal localization in uninjured spinal cord axons. Furthermore, labelled alpha-DTX colocalized with Kv1.1 and Kv1.2 along axons. These findings suggest a novel mechanism of axonal dysfunction after SCI whereby an increased 4-AP- and alpha-DTX-sensitive K+ conductance, mediated in part by increased Kv1.1 and Kv1.2 K+ channel expression, contributes to abnormal axonal physiology in surviving axons.  相似文献   
7.
Dysfunction of surviving axons which traverse the site of spinal cord injury (SCI) appears to contribute to posttraumatic neurological deficits, though the underlying mechanisms remain unclear. Although demyelination of injured but surviving axons following trauma appear to be a major contributor of axonal conduction deficits, altered activity of ion channels may also play an important role. It has been theorized that exposure of K+ channels as a result of demyelination would result in a reduced safety factor of action potential propagation across the demyelinated region of the axon. This theory and electrophysiological studies using K+ channel blockers on animal nerve preparations prompted the investigation of 4-aminopyridine (4-AP), a blocker of rapidly activating voltage-gated K+ channels, as a therapeutic agent in both multiple sclerosis and spinal cord injured patients. Several preliminary clinical trials have already demonstrated therapeutic benefit of 4-AP in both multiple sclerosis and spinal cord injured patients. In this review, we shall give a comprehensive summary of the mechanisms of axonal dysfunction following SCI and how axonal dysfunction may have resulted due to specific pathological changes following trauma including the ultrastructural and molecular changes that occur to myelinated axons. The pathology of spinal cord injury is very complex and many different mechanisms may contribute to axonal conduction deficits and the associated sensory and motor loss.  相似文献   
8.
Nashmi R  Fehlings MG 《Neuroscience》2001,104(1):235-251
The spinal cord is rarely transected after spinal cord injury. Dysfunction of surviving axons, which traverse the site of spinal cord injury, appears to contribute to post-traumatic neurological deficits, although the underlying mechanisms remain unclear. The subpial rim frequently contains thinly myelinated axons which appear to conduct signals abnormally, although it is uncertain whether this truly reflects maladaptive alterations in conduction properties of injured axons during the chronic phase of spinal cord injury or whether this is merely the result of the selective survival of a subpopulation of axons. In the present study, we examined the changes in axonal conduction properties after chronic clip compression injury of the rat thoracic spinal cord, using the sucrose gap technique and quantitatively examined changes in the morphological and ultrastructural features of injured axonal fibers in order to clarify these issues. Chronically injured dorsal columns had a markedly reduced compound action potential amplitude (8.3% of control) and exhibited significantly reduced excitability. Other dysfunctional conduction properties of injured axons included a slower population conduction velocity, a longer refractory period and a greater degree of high-frequency conduction block at 200 Hz. Light microscopic and ultrastructural analysis showed numerous axons with abnormally thin myelin sheaths as well as unmyelinated axons in the injured spinal cord. The ventral column showed a reduced median axonal diameter and the lateral and dorsal columns showed increased median diameters, with evidence of abnormally large swollen axons. Plots of axonal diameter versus myelination ratio showed that post-injury, dorsal column axons of all diameters had thinner myelin sheaths. Noninjured dorsal column axons had a median myelination ratio (1.56) which was within the optimal range (1.43-1.67) for axonal conduction, whereas injured dorsal column axons had a median myelination ratio (1.33) below the optimal value. These data suggest that maladaptive alterations occur postinjury to myelin sheath thickness which reduce the efficiency of axonal signal transmission.In conclusion, chronically injured dorsal column axons show physiological evidence of dysfunction and morphological changes in axonal diameter and reduced myelination ratio. These maladaptive alterations to injured axons, including decrease in myelin thickness and the appearance of axonal swellings, contribute to the decreased excitability of chronically injured axons. These results further clarify the mechanisms underlying neurological dysfunction after chronic neurotrauma and have significant implications regarding approaches to augment neural repair and regeneration.  相似文献   
9.
This work aimed to study one of the most important challenges in orthopaedic implantations, known as stress shielding of total shoulder implants. This problem arises from the elastic modulus mismatch between the implant and the surrounding tissue, and can result in bone resorption and implant loosening. This objective was addressed by designing and optimising a cellular-based lattice-structured implant to control the stiffness of a humeral implant stem used in shoulder implant applications. This study used a topology lattice-optimisation tool to create different cellular designs that filled the original design of a shoulder implant, and were further analysed using finite element analysis (FEA). A laser powder bed fusion technique was used to fabricate the Ti-6Al-4V test samples, and the obtained material properties were fed to the FEA model. The optimised cellular design was further fabricated using powder bed fusion, and a compression test was carried out to validate the FEA model. The yield strength, elastic modulus, and surface area/volume ratio of the optimised lattice structure, with a strut diameter of 1 mm, length of 5 mm, and 100% lattice percentage in the design space of the implant model were found to be 200 MPa, 5 GPa, and 3.71 mm−1, respectively. The obtained properties indicated that the proposed cellular structure can be effectively applied in total shoulder-replacement surgeries. Ultimately, this approach should lead to improvements in patient mobility, as well as to reducing the need for revision surgeries due to implant loosening.  相似文献   
10.
Neuronal nicotinic acetylcholine (ACh) receptors are ligand-gated, cation-selective ion channels. Nicotinic receptors containing alpha4, alpha6, beta2, and beta3 subunits are expressed in midbrain dopaminergic neurons, and they are implicated in the response to smoked nicotine. Here, we have studied the cell biological and biophysical properties of receptors containing alpha6 and beta3 subunits by using fluorescent proteins fused within the M3-M4 intracellular loop. Receptors containing fluorescently tagged beta3 subunits were fully functional compared with receptors with untagged beta3 subunits. We find that beta3- and alpha6-containing receptors are highly expressed in neurons and that they colocalize with coexpressed, fluorescent alpha4 and beta2 subunits in neuronal soma and dendrites. F?rster resonance energy transfer (FRET) reveals efficient, specific assembly of beta3 and alpha6 into nicotinic receptor pentamers of various subunit compositions. Using FRET, we demonstrate directly that only a single beta3 subunit is incorporated into nicotinic acetylcholine receptors (nAChRs) containing this subunit, whereas multiple subunit stoichiometries exist for alpha4- and alpha6-containing receptors. Finally, we demonstrate that nicotinic ACh receptors are localized in distinct microdomains at or near the plasma membrane using total internal reflection fluorescence (TIRF) microscopy. We suggest that neurons contain large, intracellular pools of assembled, functional nicotinic receptors, which may provide them with the ability to rapidly up-regulate nicotinic responses to endogenous ligands such as ACh, or to exogenous agents such as nicotine. Furthermore, this report is the first to directly measure nAChR subunit stoichiometry using FRET and plasma membrane localization of alpha6- and beta3-containing receptors using TIRF.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号