首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78篇
  免费   14篇
儿科学   1篇
基础医学   44篇
临床医学   22篇
内科学   14篇
皮肤病学   4篇
特种医学   1篇
综合类   1篇
预防医学   1篇
药学   4篇
  2020年   1篇
  2013年   1篇
  2012年   1篇
  2010年   5篇
  2009年   3篇
  2008年   3篇
  2006年   1篇
  2005年   7篇
  2004年   4篇
  2003年   4篇
  2002年   4篇
  2001年   2篇
  2000年   4篇
  1999年   2篇
  1998年   4篇
  1997年   2篇
  1995年   2篇
  1993年   2篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   8篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1982年   1篇
  1980年   1篇
  1979年   4篇
  1977年   2篇
  1976年   3篇
  1975年   4篇
  1974年   3篇
  1973年   1篇
排序方式: 共有92条查询结果,搜索用时 15 毫秒
1.
H-2-restricted cytotoxic T cells specific for Sendai virus were generated in vitro in a primary response from normal mouse lymphocytes cultured in the presence of infective as well as inactivated Sendai virus. Antigen-presenting cells of different origin, including T cells, were found to be effective stimulators. Antibodies to Sendai virus were shown to inhibit the activation of specific precursor killer cells when added to cultures before, but not after, the addition of viral antigen. Data obtained by Lyt phenotyping, revealed that precursor killer cells specific for Sendai virus reside in the Lyt-2,3+ T cell population and that Lyt-1,2,3+ T cells are not required for the generation of cytotoxic lymphocytes. Different activation kinetics were demonstrated for primary and secondary antiviral cytotoxic responses, and the analysis of the proliferation and stimulation requirements suggests qualitative differences.  相似文献   
2.
Infection of H-2-identical mice with either lymphocytic choriomeningitis (LCM) virus, vaccinia virus, or paramyxo (Sendai) virus resulted in the generation of specifically sensitized cytotoxic T lymphocytes (CTL). CTL generated in vitro against 2,4,6-trinitrophenyl (TNP)-conjugated syngeneic stimulator cells were specifically cytotoxic for TNP-conjugated H-2K (D) region identical targets. Both LCM and vaccinia-induced CTL, however, were found to be strongly cytotoxic towards TNP-conjugated, H-2K(D) region-identical target cells. In contrast, Sendai virus-induced CTL did not lyse TNP-conjugated, syngeneic target cells. Inhibition experiments using cold targets suggested that shared antigenic determinants can be detected on either LCM virus-infected and TNP-conjugated targets, which are not present on the cell surface of normal target cells.  相似文献   
3.
PA28alpha/beta is a regulatory complex of the 20S proteasome which consists of two IFN-gamma inducible subunits. Both subunits, alpha and beta, contribute equally to the formation of hexa- or heptameric rings which can associate with the 20S proteasome. Previously, we have shown that overexpression of the PA28alpha subunit enhanced the MHC class I-restricted presentation of two viral epitopes and that purified PA28alpha/beta accelerated T cell epitope generation by the 20S proteasome in vitro, indicating a role for PA28alpha/beta in antigen presentation. This conclusion was recently confirmed in PA28beta gene targeted mice which were severely deficient in MHC class I-restricted antigen presentation. These mice displayed a defect in the assembly of immunoproteasomes, suggesting that a lack of the proteasome subunits LMP2, LMP7, and MECL-1 may account for the deficiency in antigen presentation. In this study we investigated whether the effect of PA28alpha/beta on antigen presentation is dependent on a change of proteasome subunit composition. We have analyzed the assembly and subunit composition of proteasomes in fibroblast transfectants overexpressing both, alpha and beta subunits of PA28. In these transfectants we found a marked enhancement in the presentation of the immunodominant H-2Ld-restricted pp89 epitope of murine cytomegalovirus, although the 20S proteasome composition was the same as in recipient cells. We, therefore, conclude that PA28alpha/beta can enhance antigen processing independently of changes in 20S proteasome subunit composition or assembly.  相似文献   
4.
The properties of transmembrane and soluble transplantation antigens were compared with respect to the induction of tolerance and the selection of the T-cell repertoire. For this purpose, transgenic (H-2b x H-2d)F1 mice were constructed that carry integrated copies of a modified H-2Kk gene resulting in the secretion from various cell types including thymocytes of soluble H-2Kk molecules. Despite the presence of H-2Kk antigen, these mice were still able to generate an H-2Kk-specific T-cell response. This response was comparable to that produced by normal littermates when stimulated with cells expressing membrane H-2Kk in a mixed lymphocyte reaction. In contrast, only transgenic mice failed to generate a cytolytic T-cell response to soluble H-2Kk antigen expressed by recombinant vaccinia virus and presented by the H-2Db molecule. These data imply the presence of two populations of alloreactive cytolytic T cells. A small fraction of T cells recognizes alloantigen as antigenic peptide(s) presented by other major histocompatibility complex class I molecules and tolerance can be induced in this population by soluble alloantigen. The majority of T cells, however, require the whole cell membrane-expressed class I molecule for recognition. This population is not affected by tolerance induction to the soluble major histocompatibility complex class I molecule.  相似文献   
5.
The susceptibility of certain inbred mouse strains to murine cytomegalovirus (MCMV) is related to their inability to generate a strong natural killer (NK) cell response. We addressed here whether the MCMV susceptibility of the BALB/c strain is due to viral functions that control NK cell activation in a strain-specific manner. MCMV expresses two proteins, gp48 and gp40, that are encoded by the genes m06 and m152, respectively; they down-regulate major histocompatibility complex (MHC) class I expression at the plasma membrane. Using MCMV deletion mutants and revertants, we found that gp40 but not gp48 controls NK cell activation. Absence of gp40 improved antiviral NK cell control in BALB/c, but not C57BL/6, mice. Down-regulation of H-60, the high-affinity ligand for the NKG2D receptor, was the mechanism by which gp40 modulates NK cell activation. Thus, a single herpesvirus protein has a dual function in inhibiting both the adaptive as well as the innate immune response.  相似文献   
6.
We have established a murine model system for exploring the ability of a CD4 subset-deficient host to cope with cytomegalovirus infection, and reported three findings. First, an antiviral response of the CD8 subset of T lymphocytes could be not only initiated but also maintained for a long period of time despite a continued absence of the CD4 subset, whereas the production of antiviral antibody proved strictly dependent upon help provided by the CD4 subset. Second, no function in the defense against infection could be ascribed as yet to CD4-CD8- T lymphocytes, which were seen to accumulate to a new subset as a result of depletion of the CD4 subset. This newly arising subset did not substitute for CD4+ T lymphocytes in providing help to B lymphocytes, and was also not effective in controlling the spread of virus in host tissues. As long as a function of these cells in the generation and maintenance of a CD8 subset-mediated response is not disproved, caution is indicated with concern to an autonomy of the CD8 subset. Third, even though with delay, the CD8+ effector cells raised in the CD4 subset-deficient host were able of clear vital tissues from productive infection and to restrict asymptomatic, persistent infection to acinar glandular epithelial cells in salivary gland tissue.  相似文献   
7.
Proteasomes generate peptides bound by major histocompatibility complex (MHC) class I molecules. Avoiding proteasome inhibitors, which in most cases do not distinguish between individual active sites within the cell, we used a molecular genetic approach that allowed for the first time the in vivo analysis of defined proteasomal active sites with regard to their significance for antigen processing. Functional elimination of the δ/low molecular weight protein (LMP) 2 sites by substitution with a mutated inactive LMP2 T1A subunit results in reduced cell surface expression of the MHC class I H-2Ld and H-2Dd molecules. Surface levels of H-2Ld and H-2Dd molecules were restored by external loading with peptides. However, as a result of the active site mutation, MHC class I presentation of a 9-mer peptide derived from a protein of murine cytomegalovirus was enhanced about three- to fivefold. Our experiments provide evidence that the δ/LMP2 active site elimination limits the processing and presentation of several peptides, but may be, nonetheless, beneficial for the generation and presentation of others.  相似文献   
8.
The aim of this study is to analyze the dynamics of the mouse cytomegalovirus (MCMV)-dendritic cell (DC) interaction. Immature and mature DCs derived from the mouse stem cell line factor-dependent cell Paterson mixed potential were infected with a recombinant MCMV expressing green fluorescent protein. Infection of immature DCs resulted in DC activation and virus production, both of which may contribute to viral dissemination. The infection of mature DCs was nonproductive and was restricted to immediate-early and early viral protein expression. During early stages of MCMV infection, mature DCs up-regulated major histocompatibility complex (MHC) and costimulatory molecules and activated autologous, but not allogeneic, naive T cells. At later times of MCMV infection, DCs prevented T cell activation by down-regulation of MHC and costimulatory molecules. Thus, DCs under the influence of MCMV have a physiologic dual role: to initiate and to restrict T cell activation. The lack of immunostimulation in allogeneic settings may explain the increased risk of MCMV morbidity after allogeneic transplantation.  相似文献   
9.
10.
Residues critical for establishing a trimolecular interaction with a major histocompatibility complex (MHC)-encoded receptor and a T cell antigen receptor (TcR) were determined for an antigenic nonapeptide. The N-terminal residue proved to be involved in binding of the peptide to both receptors and the C-terminal residue was essential for MHC binding. While substitution of either of these critical terminal residues by alanine resulted in an almost complete loss of peptide antigenicity, simultaneous substitution of both created a new functional ligand for the same MHC molecule and the same TcR. Notably, in the biterminally substituted peptide, the core residues took on new roles in the trimolecular interaction in that a residue critical in the authentic nonapeptide for TcR binding became critical for MHC binding and former spacer residues became essential to various degrees for the interaction with either receptor or both. Thus, apparently, the loss of the terminal residues' contribution was at least partially compensated by a redistribution of the roles among the remaining residues. These results reflect a cooperative contribution of all residues of an antigenic peptide to its binding to both receptors and thus challenge a static definition of agretope and epitope as MHC and TcR binding sites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号