首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   2篇
基础医学   2篇
临床医学   8篇
内科学   12篇
外科学   1篇
综合类   1篇
预防医学   5篇
药学   11篇
肿瘤学   3篇
  2023年   1篇
  2022年   2篇
  2021年   3篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   3篇
  2012年   2篇
  2011年   4篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2007年   2篇
  2006年   1篇
  2005年   3篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  1983年   1篇
排序方式: 共有43条查询结果,搜索用时 7 毫秒
1.
Malaria, a global threat to the human population, remains a challenge partly due to the fast-growing drug-resistant strains of Plasmodium species. New therapeutics acting against the pathogenic asexual and sexual stages, including liver-stage malarial infection, have now attained more attention in achieving malaria eradication efforts. In this paper, two previously identified potent antiplasmodial hydroxyethylamine (HEA) compounds were investigated for their activity against the malaria parasite''s multiple life stages. The compounds exhibited notable activity against the artemisinin-resistant strain of P. falciparum blood-stage culture with 50% inhibitory concentrations (IC50) in the low micromolar range. The compounds'' cytotoxicity on HEK293, HepG2 and Huh-7 cells exhibited selective killing activity with IC50 values > 170 μM. The in vivo efficacy was studied in mice infected with P. berghei NK65, which showed a significant reduction in the blood parasite load. Notably, the compounds were active against liver-stage infection, mainly compound 1 with an IC50 value of 1.89 μM. Mice infected with P. berghei sporozoites treated with compound 1 at 50 mg kg−1 dose had markedly reduced liver stage infection. Moreover, both compounds prevented ookinete maturation and affected the developmental progression of gametocytes. Further, systematic in silico studies suggested both the compounds have a high affinity towards plasmepsin II with favorable pharmacological properties. Overall, the findings demonstrated that HEA and piperidine possessing compounds have immense potential in treating malarial infection by acting as multistage inhibitors.

Malaria, a global threat to the human population, remains a challenge partly due to the fast-growing drug-resistant strains of Plasmodium species.  相似文献   
2.
Spider venom is a complex mixture of protein and peptide toxins. Hyaluronidase a 'spreading factor' has not been studied extensively in spider venom. In this paper, we describe the purification and characterization of a hyaluronidase from Hippasa partita venom gland extract. Hyaluronidase (HPHyal) has been purified by the successive chromatography on a Sephadex G-100 and on CM-Sephadex C-25 columns. HPHyal has been purified to an extent of about approximately 20-folds. The molecular mass was found to be 42.26 kDa by matrix-assisted laser desorption ionization time of flight (MALDI-TOF) mass spectrometry. HPHyal was optimally active at pH 5.8 at 37 degrees C and in the presence of 300 mM NaCl in the reaction mixture. HPHyal showed absolute specificity for hyaluronan and belongs to neutral active group of enzymes. HPHyal revealed single-precipitin line, while venom gland extract revealed multiple bands in Western blotting with the antiserum prepared against venom gland extract. HPHyal indirectly potentiates the myotoxicity of VRV-PL-VIII myotoxin and also the hemorrhagic potency of hemorrhagic complex-I. Cations, Na(+) and K(+) enhanced the activity and chloride ions do not have any effect while, divalent cations, inhibited the enzyme activity.  相似文献   
3.
In rats rendered hypercholesterolaemic by maintaining them on a cholesterol-enriched diet (0.5 %) for 8 weeks, as a result of alteration in membrane structural lipids, erythrocytes were observed to be deformed and become more fragile. This deformity and fragility was partially reversed by the two dietary spice principles, curcumin and capsaicin, and the spice, garlic, by virtue of their ability to lower the extent of hypercholesterolaemia. A further insight into the factors that might have reduced the fluidity of erythrocytes in hypercholesterolaemic rats revealed changes in fatty acid profile of the membranes, phospholipid composition of the membrane bilayer, reduced Ca(2+),Mg(2+)-ATPase, and reduction in the sensitivity of erythrocytes to concanavaline A. Dietary capsaicin appeared to counter these changes partially in hypercholesterolaemic rats. Electron spin resonance (ESR) spectra and fluorescence anisotropy parameters also revealed altered fluidity of erythrocytes in hypercholesterolaemic rats. Dietary capsaicin and curcumin significantly reversed this alteration. Scanning electron microscopic examination revealed that the echinocyte population was increased in the erythrocytes of hypercholesterolaemic rats, and this was significantly countered by dietary capsaicin. The membrane protein profile and the active cation efflux appeared to be unaffected in the hypercholesterolaemic situation.  相似文献   
4.
A series of novel thioxothiazolidin-4-one derivatives 5(a–g) were synthesized by the coupling of different amines containing aliphatic, substituted aromatic, and heterocyclic moieties, such as oxadiazol, pyrazole, isoxazole, and piperazine with 2-(5-(4-chlorophenyl)furan-2-yl)methylene)-4-oxo-2-thioxothiazolidin-3-yl)acetic acid. All compounds were characterized by 1H NMR, LCMS, FTIR and elemental analysis. In this study, we investigated the possibility that these novel thioxothiazolidin-4-one derivatives 5(a–g) inhibits tumor growth and tumor induced angiogenesis using mouse Ehrlich Ascites Tumor (EAT) as a model system. Our results demonstrated that the compounds significantly reduced ascites tumor volume, cell number, and increased the life span of EAT-bearing mice. In addition, the compounds manifested strong antiangiogenic effects and suppressed tumor induced endothelial proliferation in the mice peritoneum. From our findings, it is noted that the derivatives 5(a–e) may be possible candidates for anticancer therapy with the ability to inhibit tumor angiogenesis and tumor cell proliferation.  相似文献   
5.
6.
7.
Serial serum sialic acid (N-acetylneuraminic acid) was measured in 16 patients with advanced cancer of various histologic types. In the 15 evaluable patients serial changes in sialic acid correlated with the clinical course. Isolated sialic acid values were not predictive of clinical response. Serial determination of serum sialic acid appears to be a useful monitor of tumor burden.  相似文献   
8.
The COVID-19 pandemic has wreaked havoc around the globe and caused significant disruptions across multiple domains[1]. Moreover, different countries have been differentially impacted by COVID-19 — a phenomenon that is due to a multitude of complex and often interacting determinants[2]. Understanding such complexity and interacting factors requires both compelling theory and appropriate data analytic techniques. Regarding data analysis, one question that arises is how to analyze extremely non-normal data, such as those variables evidencing L-shaped distributions. A second question concerns the appropriate selection of a predictive modelling technique when the predictors derive from multiple domains (e.g., testing-related variables, population density), and both main effects and interactions are examined.  相似文献   
9.
Melatonin is a chronobiotic hormone, which can regulate human diseases like cancer, atherosclerosis, respiratory disorders, and microbial infections by regulating redox system. Melatonin exhibits innate immunomodulation by communicating with immune system and influencing neutrophils to fight infections and inflammation. However, sustaining redox homeostasis and reactive oxygen species (ROS) generation in neutrophils are critical during chemotaxis, oxidative burst, phagocytosis, and neutrophil extracellular trap (NET) formation. Therefore, endogenous antioxidant glutathione (GSH) redox cycle is highly vital in regulating neutrophil functions. Reduced intracellular GSH levels and glutathione reductase (GR) activity in the neutrophils during clinical conditions like autoimmune disorders, neurological disorders, diabetes, and microbial infections lead to dysfunctional neutrophils. Therefore, we hypothesized that redox modulators like melatonin can protect neutrophil health and functions under GSH and GR activity–deficient conditions. We demonstrate the dual role of melatonin, wherein it protects neutrophils from oxidative stress-induced apoptosis by reducing ROS generation; in contrast, it restores neutrophil functions like phagocytosis, degranulation, and NETosis in GSH and GR activity–deficient neutrophils by regulating ROS levels both in vitro and in vivo. Melatonin mitigates LPS-induced neutrophil dysfunctions by rejuvenating GSH redox system, specifically GR activity by acting as a parallel redox system. Our results indicate that melatonin could be a potential auxiliary therapy to treat immune dysfunction and microbial infections, including virus, under chronic disease conditions by restoring neutrophil functions. Further, melatonin could be a promising immune system booster to fight unprecedented pandemics like the current COVID-19. However, further studies are indispensable to address the clinical usage of melatonin.  相似文献   
10.
TP508 is a synthetically derived tissue repair peptide that has previously demonstrated safety and potential efficacy in phase I/II clinical trials for the treatment of diabetic foot ulcers. Recent studies show that a single injection of TP508 administered 24 h after irradiation significantly increases survival and delays mortality in murine models of acute radiation mortality. Thus, TP508 is being developed as a potential nuclear countermeasure. Because of the short plasma half-life of TP508, we hypothesize that increasing the peptide bioavailability would increase TP508 efficacy or reduce the dosage required for therapeutic effects. We, therefore, evaluated the covalent attachment of various sizes of polyethylene glycol to TP508 at either its N-terminus or at an internal cysteine. A size-dependent increase in TP508 plasma half-life due to PEGylation was observed in blood samples from male CD-1 mice using fluorescently labeled TP508 and PEGylated TP508 derivatives. Biological activity of PEGylated TP508 derivatives was evaluated using a combination of biologically relevant assays for wound closure, angiogenesis, and DNA repair. PEG5k-TP508 enhanced wound closure after irradiation and enhanced angiogenic sprouting in murine aortic ring segments relative to equimolar dosages of TP508 without enhancing circulating half-life. PEG30k-TP508 extended the plasma half-life by approximately 19-fold while also showing enhanced biological activity. Intermediate-sized PEGylated TP508 derivatives had enhanced plasma half-life but were not active in vivo. Thus, increased half-life does not necessarily correlate with increased biological activity. Nevertheless, these results identify two candidates, PEG5k-TP508 and PEG30k-TP508, for potential development as second-generation TP508 injectable drugs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号