首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   2篇
  国内免费   1篇
基础医学   3篇
临床医学   1篇
内科学   17篇
神经病学   4篇
外科学   1篇
预防医学   1篇
药学   2篇
中国医学   1篇
肿瘤学   2篇
  2022年   1篇
  2021年   1篇
  2018年   1篇
  2017年   1篇
  2014年   1篇
  2013年   4篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2009年   4篇
  2008年   2篇
  2006年   1篇
  2005年   4篇
  2003年   2篇
  2002年   1篇
  1996年   1篇
  1993年   1篇
  1988年   2篇
排序方式: 共有32条查询结果,搜索用时 15 毫秒
1.
Circadian 5-HT production regulated by adrenergic signaling   总被引:1,自引:0,他引:1       下载免费PDF全文
Using on-line microdialysis, we have characterized in vivo dynamics of pineal 5-hydroxytryptamine (5-HT; serotonin) release. Daily pineal 5-HT output is triphasic: (i) 5-HT levels are constant and high during the day; (ii) early in the night, there is a novel sharp rise in 5-HT synthesis and release, which precedes the nocturnal rise in melatonin synthesis; and (iii) late in the night, levels are low. This triphasic 5-HT production persists in constant darkness and is influenced strongly by intrusion of light at night. We demonstrate that both diurnal 5-HT synthesis and 5-HT release are activated by sympathetic innervation from the superior cervical ganglion and show that these processes are controlled by distinct receptors. The increase in 5-HT synthesis is controlled by beta-adrenergic receptors, whereas the increase in 5-HT release is mediated by alpha-adrenergic signaling. On the other hand, the marked decrease in 5-HT content and release late at night is a passive process, influenced by the extent of melatonin synthesis. In the absence of melatonin synthesis, the late-night decline in 5-HT release is prevented, reaching levels roughly twice as high as that of the day value. In summary, our results demonstrate that 5-HT levels display marked circadian rhythms that depend on adrenergic signaling.  相似文献   
2.
3.
Nocturnal melatonin production is reportedly controlled by the rhythms of serotonin N-acetyltransferase (NAT, or arylalkylamine N-acetyltransferase). While analyzing the melatonin synthetic pathways of Long Evans cinnamon (LEC) rats mutant for PINA, a pineal night-specific ATPase defective in Wilson disease, we discovered that NAT activity and protein levels are greatly reduced in LEC rats, and that the highly conserved histidine 28 is mutated to tyrosine. To study the effect of H28Y, we isolated a new strain of rat termed LPN that is mutant for NAT but wildtype for both PINA and coat color. Compared with control rats, the LPN rats displayed low NAT protein levels and enzyme activities. These results suggest that the H28Y mutation in NAT is the cause of reduced NAT levels in vivo. The identical H28Y mutation was also found in Sprague-Dawley rats from Zivic-Miller, suggesting it may be a common mutation in rodents. When analyzed in bacterial cells and HEK293 cells, the mutation resulted in reduction of both NAT protein stability and catalytic activity, confirming that the in vivo NAT phenotype in LPN rats was due to the H28Y mutation. Further analysis of the NAT-H28Y will focus on the mechanisms of the increased degradation both in vitro and in vivo, which will facilitate our understanding of how melatonin synthesis is controlled at the molecular level.  相似文献   
4.
Sleep disorders are important risk factors for stroke; conversely, stroke patients suffer from sleep disturbances including disruptions of non-rapid eye movement (NREM) and rapid eye movement (REM) sleep and a decrease in total sleep. This study was performed to characterize the effect of stroke on sleep architecture of rats using continuous electroencephalography (EEG) and activity monitoring. Rats were implanted with transmitters which enabled continuous real time recording of EEG, electromyography (EMG), and locomotor activity. Baseline recordings were performed prior to induction of either transient middle cerebral artery (MCA) occlusion or sham surgery. Sleep recordings were obtained for 60 h after surgery to identify periods of wakefulness, NREM, and REM sleep before and after stroke. Spectral analysis was performed to assess the effects of stroke on state-dependent EEG. Finally, we quantified the time in wake, NREM, and REM sleep before and after stroke. Delta power, a measure of NREM sleep depth, was increased the day following stroke. At the same time, there was a significant shift in theta rhythms to a lower frequency during REM and wake periods. The awake EEG slowed after stroke over both hemispheres. The EEG of the ischemic hemisphere demonstrated diminished theta power specific to REM in excess of the slowing seen over the contralateral hemisphere. In contrast to rats exposed to sham surgery which had slightly increased total sleep, rats undergoing stroke experienced decreased total sleep. The decrease in total sleep after stroke was the result of dramatic reduction in the amount of REM sleep after ischemia. The suppression of REM after stroke was due to a decrease in the number of REM bouts; the length of the average REM bout did not change. We conclude that after stroke in this experimental model, REM sleep of rats is specifically and profoundly suppressed. Further experiments using this experimental model should be performed to investigate the mechanisms and consequences of REM suppression after stroke.  相似文献   
5.
Pineal melatonin release exhibits a circadian rhythm with a tight nocturnal pattern. Melatonin synthesis is regulated by the master circadian clock within the hypothalamic suprachiasmatic nucleus (SCN) and is also directly inhibited by light. The SCN is necessary for both circadian regulation and light inhibition of melatonin synthesis and thus it has been difficult to isolate these two regulatory limbs to define the output pathways by which the SCN conveys circadian and light phase information to the pineal. A 22-h light–dark (LD) cycle forced desynchrony protocol leads to the stable dissociation of rhythmic clock gene expression within the ventrolateral SCN (vlSCN) and the dorsomedial SCN (dmSCN). In the present study, we have used this protocol to assess the pattern of melatonin release under forced desynchronization of these SCN subregions. In light of our reported patterns of clock gene expression in the forced desynchronized rat, we propose that the vlSCN oscillator entrains to the 22-h LD cycle whereas the dmSCN shows relative coordination to the light-entrained vlSCN, and that this dual-oscillator configuration accounts for the pattern of melatonin release. We present a simple mathematical model in which the relative coordination of a single oscillator within the dmSCN to a single light-entrained oscillator within the vlSCN faithfully portrays the circadian phase, duration and amplitude of melatonin release under forced desynchronization. Our results underscore the importance of the SCN′s subregional organization to both photic input processing and rhythmic output control.  相似文献   
6.
Abstract:  Circadian melatonin production in the pineal gland and retina is under the control of serotonin N-acetyltransferase (NAT) and hydroxyindole-O-methyltransferase. Because NAT activity varies diurnally, it has been considered both the melatonin rhythm-generating enzyme and the rate-limiting enzyme of melatonin synthesis. In rats with dramatically reduced NAT activity due to a H28Y mutation in NAT, melatonin levels remained the same as in wildtype controls, suggesting that NAT does not determine the rate of melatonin production at night. Using a combination of molecular approaches with a sensitive in vivo measurement of pineal diurnal melatonin production, we demonstrate that (i) N-acetylserotonin (NAS), the enzymatic product of NAT, is present in vast excess in the night pineals compared with melatonin; (ii) the continuous increase in NAT protein levels at late night does not produce a proportional increase in melatonin; and (iii) an increase in NAS in the same animal over several circadian cycles do not result in corresponding increase in melatonin output. These results strongly suggest that NAT is not the rate-limiting enzyme of melatonin formation at night.  相似文献   
7.

Background

Although heart rate variability (HRV) has diagnostic and prognostic value for the assessment of cardiac risk, HRV analysis is not routinely performed in a hospital setting. Current HRV analysis methods are primarily quantitative; such methods are sensitive to signal contamination and require extensive post hoc processing.

Methods and results

Raw electrocardiogram (ECG) data from the Sleep Heart Health Study was transformed into electrocardiomatrix (ECM), in which sequential cardiac cycles are aligned, in parallel, along a shared axis. Such juxtaposition facilitates the visual evaluation of beat-to-beat changes in the R-R interval without sacrificing the morphology of the native ECG signal. Diminished HRV, verified by traditional methods, was readily identifiable. We also examined data from a cohort of hospitalized patients who suffered cardiac arrest within 24?h of data acquisition, all of whom exhibited severely diminished HRV that were visually apparent on ECM display.

Conclusions

ECM streamlines the identification of depressed HRV, which may signal deteriorating patient condition.  相似文献   
8.
Long Evans cinnamon (LEC) rat is an animal model for human Wilson disease (WD) due to a deletion in Atp7b, the copper transporter defective in WD patients. Previously, we have demonstrated presence of an alternative product termed PIneal Night-specific ATPase (PINA) generated by an intronic promoter in Atp7b gene. Analysis of LEC rat in this study demonstrates that PINA is absent in the LEC pineal establishing its usefulness for investigating PINA function. Studies of the LEC pineal, however, revealed an additional defect in serotonin N-acetyltransferase (NAT), the key enzyme in melatonin production. Linkage studies confirm that the NAT phenotype is entirely independent of PINA mutation in the pineal gland of LEC rats, and sequence analysis demonstrates that NAT defect is due to a point mutation in NAT coding region. In addition, we demonstrate that the cinnamon coat color of the LEC rat is unlinked to PINA and NAT deficiencies in these animals. To facilitate further functional analysis of PINA in pineal physiology, we crossed LEC rats with PVG rats that are wildtype for PINA, NAT and coat color, and obtained rats that are defective only in PINA/Atp7b locus (termed LPP rats) and normal for NAT activity and coat color. Furthermore, we have identified the deletion breakpoint of Atp7b gene in LPP rats, which allows simplified genotyping of mutant animals. The separation of PINA mutation from both NAT and coat color mutations in the new LPP rats will permit better functional studies of PINA in pineal circadian physiology.  相似文献   
9.
Six human SP1 clones were isolated from a term placental cDNA library by immunological screening. All six cDNA clones cross-hybridized. However, at least two classes of cDNA could be distinguished, based on the presence or absence of an EcoRI site in the insert. Northern blot analysis of human term placental mRNA with all six cloned inserts demonstrated the presence of two mRNA species of 1.6 and 2.4 kb, respectively. The amino acid sequences of tryptic fragments of pure human SP1 protein were determined for confirmation of the identity of these cDNA clones. Using one of the cloned cDNA as probe, two and ten hybridizing clones were isolated from a human testicular cDNA library and a HeLa cell cDNA library, respectively. Southern blot analysis of these clones showed strong hybridization with the SP1 cDNA probe under high stringency, indicating the presence of highly homologous mRNA species in these tissues.  相似文献   
10.

Background

BCR/ABL and Wilms’ tumor 1 (WT1) are an ideal tumor associated antigens which can be used to develop a potential chronic myeloid leukemia (CML) dentritic cell (DC) vaccine. Here, we constructed a novel polyepitope vaccine which used recombinant lentiviral vector carrying BCR/ABL and WT1 genes, and determined the immunological effects of this vaccine in vitro.

Methods

The DC vaccine was constructed using lentiviral vector transduced DCs. T lymphocytes were stimulated with DC vaccine and then co-cultured in vitro with peripheral blood mononuclear cells (PBMCs) from CML or ALL patients, respectively. The cytotoxicity of proliferous cytotoxic T lymphocytes (CTLs) was determined by the LDH assay. The IFN-γ production of CTLs was detected using ELISPOT assay.

Results

We constructed an lentiviral vector encoding 50 different epitopes from BCR/ABL and WT1 antigens, and transferred it into DCs to prepare the DC vaccine successfully. The in vivo stimulation of CTLs with this DC vaccine were proved to show strong cytotoxicity and produce high level of IFN-γ.

Conclusions

The novel recombinant lentiviral polyepitope DC vaccine is a promising candidate for clinical trials and may be an effective approach for CML immunotherapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号