首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   7篇
基础医学   37篇
临床医学   2篇
内科学   38篇
预防医学   12篇
药学   2篇
  2021年   1篇
  2016年   2篇
  2015年   1篇
  2014年   5篇
  2013年   4篇
  2012年   11篇
  2011年   13篇
  2010年   6篇
  2008年   4篇
  2007年   6篇
  2006年   7篇
  2005年   4篇
  2004年   4篇
  2003年   6篇
  2002年   6篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1992年   5篇
  1990年   1篇
  1989年   1篇
排序方式: 共有91条查询结果,搜索用时 15 毫秒
1.
Rapid antigen assays provide an effective tool for the detection of malaria in symptomatic patients. However, the efficacy of these devices for detecting asymptomatic malaria, where parasite levels are normally significantly lower than in symptomatic patients, is less well established. We evaluated the efficacy of a new combined Plasmodium falciparum-Plasmodim vivax immunochromatographic test (ICT Malaria Pf/Pv) in a cross-sectional malaria survey of the village of Ban Kong Mong Tha, Kanchanaburi Provice, Thailand, from August to December 2000. A total of 1,976 bleeds were made from 559 individuals over the course of the study. Blinded microscopy of thick and thin blood films was used as the gold standard; all discordant and 10% of concordant results were cross-checked. Of 1,976 ICT Malaria Pf/Pv dipsticks tested, 98.3% (n = 1,943) performed as expected, as evidenced by the appearance of the control line. The ICT Malaria Pf/Pv test was both sensitive (100.0%) and specific (99.7 %) for the diagnosis of falciparum malaria with parasitemias of > or = 500 trophozoites/microL; however, only 15.9% (13/82) of infected individuals had parasitemia rates this high. When P. falciparum parasitemia rates were < 500/microL, the sensitivity of the diagnosis was only 23.3%, with a positive predictive value (PPV) and a negative predictive value (NPV) of 76.2 and 97.2%, respectively. The ICT Malaria Pf/Pv test was specific, but not sensitive, for the diagnosis of vivax malaria with parasite rates of > or = 500 trophozoites/microl, with sensitivity, specificity, PPV, and NPV of 66.7%, 99.9%, 66.7%, and 99.9%, respectively. At parasite rates of < 500/microL, corresponding values were 0.0%, 99.9%, 0%, and 95.1%. Because of the relatively high cost of these assays, low parasite rates found in the majority of asymptomatic individuals, and low sensitivity of this assay with rates of < 500/microl, use of this assay as a tool for active case detection is of limited value in western Thailand.  相似文献   
2.
Among the proteins involved in the invasion by merozoite, the glycosylphosphatidylinositol-anchored proteins (GPI-APs) are suggested as potential vaccine candidates because of their localization to apical organelles and the surface; these candidates are predicted to play essential roles during invasion. As a GPI-AP, Plasmodium vivax merozoite surface protein 10 (PvMSP-10) induces high antibody titers. However, such high antibody titers have shown no protective efficacy for animals challenged with P. vivax parasites in a previous study. To adequately evaluate the immunogenicity and further characterize PvMSP-10 in order to understand its vaccine potential, we assessed its immunogenicity by immunizing BALB/c mice with cell-free expressed recombinant PvMSP-10 protein. The antigenicity of MSP-10 was analyzed, and we found 42 % sensitivity and 95 % specificity using serum samples from P. vivax-infected Korean patients. The IgG1 and IgG3 were the predominant immunoreactive antibodies against PvMSP-10 in vivax patient sera, and IgG1 and IgG3 and Th1-type cytokines were predominantly secreted in PvMSP-10-immunized mice. We conclude that the immunogenicity and antigenicity of MSP-10 may serve as a potential vaccine against vivax malaria.  相似文献   
3.
4.
A successful vaccine against Plasmodium vivax malaria would significantly improve the health and quality of the lives of more than 1 billion people around the world. A subunit vaccine is the only option in the absence of long-term culture of P. vivax parasites. The circumsporozoite protein that covers the surface of Plasmodium sporozoites is one of the best-studied malarial antigens and the most promising vaccine in clinical trials. We report here the development of a novel "immunologically optimal" recombinant vaccine expressed in Escherichia coli that encodes a chimeric CS protein encompassing repeats from the two major alleles, VK210 and VK247. This molecule is widely recognized by sera from patients naturally exposed to P. vivax infection and induces a highly potent immune response in genetically disparate strains of mice. Antibodies from immunized animals recognize both VK210 and VK247 sporozoites. Furthermore, these antibodies appear to be protective in nature since they cause the agglutination of live sporozoites, an in vitro surrogate of sporozoite infectivity. These results strongly suggest that recombinant CS is biologically active and highly immunogenic across major histocompatibility complex strains and raises the prospect that in humans this vaccine may induce protective immune responses.  相似文献   
5.
The loop-mediated isothermal amplification (LAMP) method, developed by our group for diagnosis of four human malaria parasites, was evaluated on a large scale at a remote clinic in Thailand where malaria is endemic. A total of 899 febrile patients were analyzed in this study. LAMP was first evaluated in 219 patients, and the result was compared to those of two histidine-rich protein (HRP)-2 rapid diagnostic tests (RDTs) and microscopy as a gold standard. LAMP DNA extraction was conducted by a simple boiling method, and the test results were assessed visually. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were 95.7%, 100%, 100%, and 98%, respectively, for LAMP and 98.6%, 98%, 95.8%, and 99.3%, respectively, for RDTs. Since RDT-positive results were based on one out of two RDTs, the sensitivity of RDTs was slightly higher than that of LAMP. However, LAMP tended to be more specific than RDTs. LAMP next was evaluated in 680 patients, and the result was compared to that of microscopy as a gold standard. Sensitivity, specificity, PPV, NPV, and diagnostic accuracy of LAMP were 88.9%, 96.9%, 92.2%, 95.5%, and 94.6%, respectively. Nested PCR was used to confirm the discrepant results. Malaria LAMP in a remote clinic in Thailand achieved an acceptable result, indicating that LAMP malaria diagnosis is feasible in a field setting with limited technical resources. Additionally, the rapid boiling method for extracting DNA from dried blood spots proved to be simple, fast, and suitable for use in the field.  相似文献   
6.
The development of malaria vaccines is challenging, partly because the immunogenicity of recombinant malaria parasite antigens is low. We previously demonstrated that parasite antigens integrated into a tricomponent immunopotentiating complex increase antiparasitic immunity. In this study, the B domains of a group G Streptococcus (SpG) strain and Peptostreptococcus magnus (PpL) were used to evaluate whether vaccine efficacy is influenced by the type of immunoglobulin-binding domain (IBD) in the tricomponent complex. IBDs were fused to a pentameric cartilage oligomeric matrix protein (COMP) to increase the binding avidity of the complexes for their targets. The COMP-IBD fusion proteins generated (COMP-SpG and COMP-PpL and the previously constructed COMP-Z) bound a large fraction of splenic B lymphocytes but not T lymphocytes. These carrier molecules were then loaded with an ookinete surface protein of Plasmodium vivax, Pvs25, by chemical conjugation. The administration of the tricomponent complexes to mice induced more Pvs25-specific serum IgG than did the unloaded antigen. The PpL complex, which exhibited a broad Ig-binding spectrum, conferred higher vaccine efficacy than did the Z or SpG complexes when evaluated with a membrane feed assay. This study demonstrates that this tricomponent immunopotentiating system, incorporating IBDs as the B-lymphocyte-targeting ligands, is a promising technology for the delivery of malaria vaccines, particularly when combined with an aluminum salt adjuvant.  相似文献   
7.
目的 比较我国不同地理株嗜人按蚊对间日疟原虫的易感性. 方法在我国间日疟流行区采集间日疟病例血样,采用体外人工膜饲感染系统在实验室同时体外人工感染广东、辽宁、江苏3个不同地理株的嗜人按蚊,在感染后的7~9 d和14 d分别解剖蚊胃和唾液腺,并检测蚊体内的卵囊和子孢子数.结果 共配对感染江苏、广东和辽宁地理株嗜人按蚊35批,感染7~9 d 3种按蚊卵囊阳性率分别为68.57%、60.00%和68.57%,感染后14 d子孢子阳性率分别为22.86%、14.29%和22.86%,3种按蚊感染卵囊和子孢子差异无统计学意义(P>0.05).在感染后7~9 d分别解剖江苏、辽宁、广东株嗜人按蚊228、235只和228只,卵囊阳性蚊比例分别为28.07%、25.11%和26.75%.在感染后14 d分别解剖江苏、辽宁、广东株嗜人按蚊150、142只和135只,子孢子阳性蚊比例分别为10.67%、8.45%和11.85%,三者间卵囊和子孢子阳性蚊比例差异均无统计学意义(P均>0.05).江苏、广东、辽宁株嗜人按蚊子孢子感染度差异无统计学意义(P>0.05).结论 广东、辽宁、江苏3个不同地理株嗜人按蚊均对间日疟原虫易感.  相似文献   
8.
The infectivity of Plasmodium-infected humans in western Thailand was estimated by feeding laboratory-reared Anopheles dirus Peyton and Harrison mosquitoes on venous blood placed in a membrane-feeding apparatus. Between May 2000 and November 2001, a total of 6,494 blood films collected during an active malaria surveillance program were checked by microscopy for the presence of Plasmodium parasites: 3.3, 4.5, and 0.1% of slides were P. falciparum- (Pf), P. vivax- (Pv), and P. malariae (Pm)-positive. Venous blood was collected from 70, 52, 6, and 4 individuals infected with Pf, Pv, Pm, and mixed Pf/Pv, respectively, with 167 uninfected individuals serving as negative controls. Only 10% (7/70), 13% (7/52), and 0% (0/6) of membrane feeds conducted on Pf-, Pv-, and Pm-infected blood yielded infected mosquitoes. One percent (2/167) of microscope-negative samples infected mosquitoes; however, both samples were subsequently determined to be Pf-positive by polymerase chain reaction. Gametocytes were observed in only 29% (4/14) of the infectious samples. All infections resulted in low oocyst loads (average of 1.2 oocysts per positive mosquito). Only 4.5% (10/222) of mosquitoes fed on the seven infectious Pf samples developed oocysts, whereas 2.9% (9/311) of mosquitoes fed on the seven infectious Pv samples developed oocysts. The probability of a mosquito becoming infected with Pf or Pv after a blood meal on a member of the human population in Kong Mong Tha was estimated to be 1 in 6,700 and 1 in 5,700, respectively. The implications toward malaria transmission in western Thailand are discussed.  相似文献   
9.
Transmission-blocking vaccines target the sexual stages of the malaria parasite and prevent further development within the mosquito vector halting the transmission of the parasite. Zygote/ookinetes are potential targets of antibodies inhibiting oocyst development in the mosquito midgut and rendering mosquitoes non-infectious. DNA vaccine constructs were developed expressing Pvs25 and Pvs28 (Plasmodium vivax zygote/ookinete surface proteins) fused at the amino terminus with tissue plasminogen activator signal peptide. Antibodies produced in mice after immunization with three doses recognized respective antigens in the parasites and in an ELISA, and these antibodies when tested in membrane feeding assay were potent blockers of P. vivax transmission. Co-immunization with Pvs25 and Pvs28 DNA vaccine constructs did not affect the antigen specific antibody responses against individual antigens, and the antibodies remained effective in blocking parasite transmission demonstrating 91-99% reduction in oocyst number in the mosquito midgut. Several combinations of homologous and heterologous antigen-delivery prime boost strategy were also evaluated and the results suggested that antibody titers and transmission-blocking activities by the three prime-boost strategies (DNA prime/DNA boost, DNA prime/protein boost, and protein prime/protein boost) were comparable with slightly better immunogenicity of heterologous antigen-delivery prime/boost as compared to DNA/DNA alone. These results demonstrate potent immunogenicity of DNA vaccines encoding Pvs25 and Pvs28 and warrant further evaluation in non-human primates.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号