首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   2篇
临床医学   1篇
内科学   5篇
药学   1篇
  2008年   1篇
  2004年   1篇
  2002年   2篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
2.
Phospholipase D (PLD) regulates the polymorphonuclear leukocyte (PMN) functions of phagocytosis, degranulation, and oxidant production. Ceramide inhibition of PLD suppresses PMN function. In streptolysin O-permeabilized PMNs, PLD was directly activated by guanosine 5'-[gamma-thio]triphosphate (GTP gamma S) stimulation of adenosine diphosphate (ADP)-ribosylation factor (ARF) and Rho, stimulating release of lactoferrin from specific granules of permeabilized PMNs; PLD activation and degranulation were inhibited by C2-ceramide but not dihydro-C2-ceramide. To investigate the mechanism of ceramide's inhibitory effect on PLD, we used a cell-free system to examine PLD activity and translocation from cytosol to plasma membrane of ARF, protein kinase C (PKC)alpha and beta, and RhoA, all of which can activate PLD. GTP gamma S-activated cytosol stimulated PLD activity and translocation of ARF, PKC alpha and beta, and RhoA when recombined with cell membranes. Prior incubation of PMNs with 10 microM C2-ceramide inhibited PLD activity and RhoA translocation, but not ARF1, ARF6, PKC alpha, or PKC beta translocation. However, in intact PMNs stimulated with N-formyl-1-methionyl-1-leucyl-1-phenylalamine (FMLP) or permeabilized PMNs stimulated with GTP gamma S, C2-ceramide did not inhibit RhoA translocation. Exogenous RhoA did not restore ceramide-inhibited PLD activity but bound to membranes despite ceramide treatment. These observations suggest that, although ceramide may affect RhoA in some systems, ceramide inhibits PLD through another mechanism, perhaps related to the ability of ceramide to inhibit phosphatidylinositol-bisphosphate (PIP2) interaction with PLD.  相似文献   
3.
Granulocyte colony-stimulating factor (GCSF) primes reduced neutrophil nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity in response to formyl peptide but does not increase oxidase activity when used alone. Both oxidase activity and degranulation require phospholipase D (PLD) activation, and exogenous C(2)-ceramide inhibits both functions through inhibition of PLD activity. We extended these observations to investigate neutrophil responses to GCSF. GCSF at a dosage of 30 to 100 ng/mL, a concentration range that primes superoxide release, stimulated a 60% to 100% increase in gelatinase release from tertiary granules but did not stimulate lactoferrin release from secondary granules. A 75% to 100% dose-dependent increase in PLD activity in GCSF-treated neutrophils was also observed. Gelatinase release and PLD activity were inhibited by 10 micromol/L C(2)-ceramide. The increase in gelatinase release in response to priming concentrations of GCSF suggests that tertiary granules contribute a component of the NADPH oxidase to the plasma membrane. Neutrophils treated with 50 ng/mL GCSF were found to contain 20% more cytochrome b(558) in the plasma membrane fraction than unstimulated cells, consistent with degranulation of only tertiary granules. Correspondingly, in the presence of 10 micromol/L C(2)-ceramide, cytochrome b(558) content in the plasma membrane did not increase after neutrophil activation. In contrast, GCSF did not lead to p47phox translocation to the plasma membrane or phosphorylation. Because phosphorylation and translocation of p47phox are required for oxidase activity, these findings account for the inability of GCSF alone to generate the respiratory burst. We conclude that translocation of cytochrome b(558) was responsible for GCSF priming of NADPH oxidase in neutrophils.  相似文献   
4.
5.
During the last several years, sphingolipids have been identified as a source of important signaling molecules. Particularly, the understanding of the distinct biological roles of ceramide, sphingosine-1-phosphate (S1P), ceramide-1-phosphate (C1P) and lyso-sphingomyelin in the regulation of cell growth, death, senescence, adhesion, migration, inflammation, angiogenesis and intracellular trafficking has rapidly expanded. Additional studies have elucidated the biological roles of sphingolipids in maintaining a homeostatic environment in cells, as well as in regulating numerous cellular responses to environmental stimuli. This review focuses on the role of S1P and C1P in maintaining Ca2+ homeostasis. By studying changes in the metabolism of S1P and C1P in pathological conditions, it is hoped that altered sphingolipid-metabolizing enzymes and their metabolites can be used as therapeutic targets.  相似文献   
6.
7.
Exogenous C(2)-ceramide has been shown to inhibit polymorphonuclear leukocyte (PMN) phagocytosis through inhibition of phospholipase D (PLD) and downstream events, including activation of extracellular signal-regulated kinases 1 and 2, leading to the hyphothesis that the sphingomyelinase pathway is involved in termination of phagocytosis. Here it is postulated that increased PLD activity generating phosphatidic acid and diacylglycerol (DAG) is essential for superoxide release and degranulation and that ceramide, previously shown to be generated during PMN activation, inhibits PLD activation, thereby leading to inhibition of PMN function. When PMNs were primed with granulocyte colony-stimulating factor (G-CSF) and then activated with N-formyl-methionyl-leucyl-phenylalanine (FMLP), C(2)-ceramide (10 microM) completely inhibited release of superoxide, lactoferrin, and gelatinase; the DAG analog sn-1,2-didecanoylglycerol (DiC10) (10 microM) restored oxidase activation and degranulation in the ceramide-treated cells. Similarly, C(2)-ceramide inhibited oxidase activity and degranulation of PMNs treated with cytochalasin B followed by FMLP, and DiC10 restored function. In contrast, C(2)-ceramide did not inhibit phosphorylation of p47phox or p38 mitogen-activated protein kinase, or translocation of p47phox, PLD-containing organelles, adenosine diphosphate-ribosylation factor 1, RhoA, protein kinase C (PKC)-beta or PKC-alpha to the plasma membrane in G-CSF or cytochalasin B-treated, FMLP-activated PMNs. PLD activity increased by 3-fold in G-CSF-primed PMNs stimulated by FMLP and by 30-fold in cytochalasin B-treated PMNs stimulated by FMLP. Both PLD activities were completely inhibited by 10 microM C(2)-ceramide. In conclusion, superoxide, gelatinase, and lactoferrin release require activation of the PLD pathway in primed PMNs and cytochalasin B-treated PMNs. Ceramide may affect protein interactions with PLD in the plasma membrane, thereby attenuating PMN activation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号