首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   4篇
儿科学   2篇
基础医学   6篇
临床医学   1篇
内科学   5篇
皮肤病学   11篇
特种医学   3篇
外科学   2篇
预防医学   4篇
眼科学   2篇
肿瘤学   3篇
  2023年   1篇
  2021年   3篇
  2020年   3篇
  2019年   2篇
  2016年   3篇
  2014年   2篇
  2012年   4篇
  2011年   1篇
  2010年   1篇
  2009年   4篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2004年   4篇
  2003年   3篇
  2002年   1篇
  1987年   1篇
  1984年   2篇
排序方式: 共有39条查询结果,搜索用时 31 毫秒
1.
Although much is known about protein folding in buffers, it remains unclear how the cellular protein homeostasis network functions as a system to partition client proteins between folded and functional, soluble and misfolded, and aggregated conformations. Herein, we develop small molecule folding probes that specifically react with the folded and functional fraction of the protein of interest, enabling fluorescence-based quantification of this fraction in cell lysate at a time point of interest. Importantly, these probes minimally perturb a protein’s folding equilibria within cells during and after cell lysis, because sufficient cellular chaperone/chaperonin holdase activity is created by rapid ATP depletion during cell lysis. The folding probe strategy and the faithful quantification of a particular protein’s functional fraction are exemplified with retroaldolase, a de novo designed enzyme, and transthyretin, a nonenzyme protein. Our findings challenge the often invoked assumption that the soluble fraction of a client protein is fully folded in the cell. Moreover, our results reveal that the partitioning of destabilized retroaldolase and transthyretin mutants between the aforementioned conformational states is strongly influenced by cytosolic proteostasis network perturbations. Overall, our results suggest that applying a chemical folding probe strategy to other client proteins offers opportunities to reveal how the proteostasis network functions as a system to regulate the folding and function of individual client proteins in vivo.All proteins are biosynthesized as linear chains, and most need to fold into 3D structures to function. Studies on protein folding in buffers have revealed that a kinetic competition typically exists between protein folding, misfolding, and aggregation. It is the role of the protein homeostasis or proteostasis network in each subcellular compartment to regulate this competition and keep the folded and functional proteome within the physiological concentration range, while minimizing misfolding and aggregation in the face of stresses (14). It remains a challenge to discern how the proteostasis network affects the folding of proteins into biologically active conformations required for function in vivo (5).Current methodologies allow for quantification of the partitioning of a protein of interest (POI) between soluble and aggregated states but cannot determine the proportion of the soluble population that is properly folded and functional. Published folding probes have the potential to report on the folded fraction in cells or cell lysate (69); however, the extent to which they shift folding equilibria and quantify the folded and functional fraction faithfully has not been studied. Herein, we create POI folding probes by adapting the principle of activity-based protein profiling (10) to quantify the soluble folded and functional fraction of a particular protein in a cell lysate. We seek folding probes that bind to and selectively react with only the folded and functional state of a POI in a cell, leaving the nonfunctional states and other cellular proteins unmodified (Fig. 1A).Open in a separate windowFig. 1.A small molecule folding probe strategy to quantify the soluble folded and functional fraction of a POI in a cell lysate. (A) Overview of the general strategy to selectively covalently label a folded and functional POI without labeling its nonfunctional conformations and other cellular proteins. (B) The experimental scheme to quantify the ratio of the soluble POI that is functional (Rf).Fluorescent folding probes for the de novo-designed enzyme, retroaldolase (RA) (11), and fluorogenic folding probes (12) for the nonenzyme protein, transthyretin (TTR), were developed and scrutinized. We show that destabilized mutant RA and TTR proteins partition into folded and functional as well as misfolded soluble conformations and that this partitioning is sensitive to proteostasis network perturbations. Experiments show that a snapshot of the distribution between folded and functional vs. soluble and misfolded conformational states can be preserved during the small molecule folding probe labeling period, provided that the cellular chaperone holdase activity is sufficient, achieved by rapid ATP depletion in parallel with cell lysis. Sufficient chaperone/chaperonin holdase activity minimizes changes in the folded and functional concentration associated with probe binding and reaction with the POI and renders the relative folding and conjugation rates much less influential.  相似文献   
2.
Sexual trauma is a national public health concern due to the alarming rates at which it occurs and decades of research supporting its long-term deleterious effects on health outcomes. We assessed the impact of gender norms and sexual trauma on power within sexual relationships among Latina immigrant farmworkers. At baseline, participants (N  = 175) completed a survey examining demographic information, sexual trauma history, and gender norms; a follow-up was administered 6 months later. Past sexual trauma was associated with less power in sexual relationships,  = −.25, < .001, as was endorsement of traditional Latina gender norms (i.e., marianismo): sexual relationship control,  = −.38, < .001; sexual decision-making dominance, r  = −.21,  = .005. In contrast, egalitarian gender norm endorsement was associated with higher levels of sexual relationship control,  = .37, < .001, and sexual decision-making dominance,  = .17,  = .023. Gender norms moderated the association between sexual trauma and sexual relationship power. Specifically, women who subscribed more to marianismo and reported sexual trauma had less decision-making dominance in sexual relationships, whereas those with lower ratings of marianismo reported higher levels of decision-making dominance despite sexual trauma, R2  = .03,  = .022. Sexual trauma history coupled with higher ratings of egalitarian gender norms was associated with higher levels of sexual relationship control, DR2  = .02,  = .023. These results highlight the importance of culturally informed research to increase the sexual and overall health of vulnerable populations (e.g., Latina immigrant farmworkers).  相似文献   
3.
In humans, genetically diverse forms of muscular dystrophy are associated with a disrupted sarcoglycan complex. The sarcoglycan complex resides at the muscle plasma membrane where it associates with dystrophin. There are six known sarcoglycan proteins in mammals whereas there are only three in Drosophila melanogaster. Using imprecise P element excision, we generated three different alleles at the Drosophila delta-sarcoglycan locus. Each of these deletions encompassed progressively larger regions of the delta-sarcoglycan gene. Line 840 contained a large deletion of the delta-sarcoglycan gene, and this line displayed progressive impairment in locomotive ability, reduced heart tube function and a shortened life span. In line 840, deletion of the Drosophila delta-sarcoglycan gene produced disrupted flight muscles with shortened sarcomeres and disorganized M lines. Unlike mammalian muscle where degeneration is coupled with ongoing regeneration, no evidence for regeneration was seen in this Drosophila sarcoglycan mutant. In contrast, line 28 was characterized with a much smaller deletion that affected only a portion of the cytoplasmic region of the delta-sarcoglycan protein and left intact the transmembrane and extracellular domains. Line 28 had a very mild phenotype with near normal life span, intact cardiac function and normal locomotive activity. Together, these data demonstrate the essential nature of the transmembrane and extracellular domains of Drosophila delta-sarcoglycan for normal muscle structure and function.  相似文献   
4.
AIM: To evaluate the role of fluorine-18-labeled fluorodeoxyglucose positron emission tomography (18F-FDG PET) in various rheumatic diseases and its potential in the early assessment of treatment response in a limited number of patients. METHODS: This study involved 28 newly diagnosed patients, of these 17 had rheumatoid arthritis (RA) and 11 had seronegative spondyloarthropathy (SSA). In the SSA group, 7 patients had ankylosing spondylitis, 3 had psoriatic arthritis, and one had non-specific SSA. Patients with RA were selected as per the American College of Rheumatology criteria. One hour after FDG injection, a whole body PET scan was performed from the skull vertex to below the knee joints using a GE Advance dedicated PET scanner. Separate scans were acquired for both upper and lower limbs. Post-treatment scans were performed in 9 patients in the RA group (at 6-9 wk from baseline) and in 1 patient with psoriatic arthropathy. The pattern of FDG uptake was analysed visually and quantified as maximum standardized uptake value (SUVmax) in a standard region of interest. Metabolic response on the scan was assessed qualitatively and quantitatively and was correlated with clinical assessment. RESULTS: The qualitative FDG uptake was in agreement with the clinically involved joints, erythrocyte sedimentation rate, C-reactive protein values and the clinical assessment by the rheumatologist. All 17 patients in the RA group showed the highest FDG avidity in painful/swollen/tender joints. The uptake pattern was homogeneous, intense and poly-articular in distribution. Hypermetabolism in the regional nodes (axillary nodes in the case of upper limb joint involvement and inguinal nodes in lower limb joints) was a constant feature in patients with RA. Multiple other extra-articular lesions were also observed including thyroid glands (in associated thyroiditis) and in the subcutaneous nodules. Treatment response was better appreciated using SUVmax values than visual interpretation, when compared with clinical evaluation. Four patients showed a favourable response, while 3 had stable disease and 2 showed disease progression. The resolution of regional nodal uptake (axillary or inguinal nodes based on site of joint involvement) in RA following disease modifying anti-rheumatoid drugs was noteworthy, which could be regarded as an additional parameter for identifying responding patients. In the SSA group, uptake in the affected joint was heterogeneous, low grade and nonsymmetrical. In particular, there was intense tendon and muscular uptake corresponding to symptomatic joints. The patients with psoriatic arthritis showed intense FDG uptake in the joints and soft tissue. CONCLUSION: 18F-FDG PET accurately delineates the ongoing inflammatory activity in various rheumatic diseases (both at articular and extra-articular sites) and relates well to clinical symptoms. Different metabolic patterns on FDG-PET scanning in RA and SSA can have important implications for their diagnosis and management in the future with the support of larger studies. FDG-PET molecular imaging is also a sensitive tool in the early assessment of treatment response, especially when using quantitative information. With these benefits, FDG-PET could play a pivotal clinical role in the management of inflammatory joint disorders in the future.  相似文献   
5.
Primary cutaneous lymphomas represent a heterogeneous group of T‐ and B‐cell lymphomas with distinct clinical presentations, histopathologic features, treatment approaches and outcomes. The cutaneous T‐cell lymphomas, which include mycosis fungoides and Sézary syndrome, account for the majority of the cutaneous lymphomas. This Clinical Practice Statement is reflective of the current clinical practice in Australia. An expanded form of the Clinical Practice Statement (and updates), along with helpful patient resources and access to support groups, can be found at the following ( http://www.australasianlymphomaalliance.org.au ).  相似文献   
6.
7.
8.
9.
BACKGROUND: Keloids are a major cause of morbidity, and arise after operation, injury, or cutaneous infection. Clinically, keloids differ from hypertrophic scars in that they grow beyond the original borders of the injury. Keloids occur most commonly for patients of African and Asian descent, and treatment options are multiple, indicating that there is no entirely satisfactory treatment for keloids. Angiogenesis inhibition has been shown to be effective in treatment of malignancy in both animal models and human beings. OBJECTIVE: We sought to determine whether keloids produce the potent angiogenic factor vascular endothelial growth factor (VEGF). METHODS: We performed in situ hybridization for VEGF on keloid tissue and normal skin. RESULTS: Our study demonstrated abundant production of VEGF in keloids and, surprisingly, the major source of VEGF was the overlying epidermis. CONCLUSIONS: Our results suggest that the overlying epidermis is the major source of keloid angiogenesis. These findings demonstrate that keloids are angiogenic lesions. Topical antiangiogenic therapy, directed at either down-regulating epidermal VEGF or inhibiting keratinocyte-derived VEGF activity on its endothelial receptors, may be useful in the treatment of keloids.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号