首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
基础医学   1篇
临床医学   1篇
内科学   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
2.
ObjectiveTo study the ability of peak cough flow (PCF) and effective cough volume, defined as the volume exsufflated >3 L/s, to detect upper airway collapse during mechanical insufflation-exsufflation (MI-E) titration in neuromuscular patients.DesignProspective observational study.SettingRehabilitation hospital.ParticipantsPatients (N=27) with neuromuscular disease causing significant impairment of chest wall and/or diaphragmatic movement.InterventionsThe lowest insufflation pressure producing the highest inspiratory capacity was used. Exsufflation pressure was decreased from ?20 cm H2O to ?60/?70 cm H2O, in 10-cm H2O decrements, until upper airway collapse was detected using the reference standard of flow-volume curve analysis (after PCF, abrupt flattening or flow decrease vs previous less negative exsufflation pressure).Main Outcome MeasuresPCF and effective cough volume profiles during expiration with MI-E.ResultsUpper airway collapse occurred in 10 patients during titration. Effective cough volume increased with decreasing expiratory pressure then decreased upon upper airway collapse occurrence. PCF continued to increase after upper airway collapse occurrence. In 5 other patients, upper airway collapse occurred at the initial ?20 cm H2O exsufflation pressure, and during titration, PCF increased and effective cough volume remained unchanged at <200 mL. PCF had 0% sensitivity for upper airway collapse, whereas effective cough volume had 100% sensitivity and specificity.ConclusionOf 27 patients, 15 experienced upper airway collapse during MI-E titration. Upper airway collapse was associated with an effective cough volume decrease or plateau and with increasing PCF. Accordingly, effective cough volume, but not PCF, can detect upper airway collapse.  相似文献   
3.
Malaria remains a major cause of mortality in the world and an efficient vaccine is the best chance of reducing the disease burden. Vaccination strategies for the liver stage of disease that utilise injection of live radiation-attenuated sporozoites (RAS) confer sterile immunity, which is mediated by CD8+ memory T cells, with liver-resident memory T cells (TRM) being particularly important. We have previously described a TCR transgenic mouse, termed PbT-I, where all CD8+ T cells recognize a specific peptide from Plasmodium. PbT-I form liver TRM cells upon RAS injection and are capable of protecting mice against challenge infection. Here, we utilize this transgenic system to examine whether nonliving sporozoites, killed by heat treatment (HKS), could trigger the development of Plasmodium-specific liver TRM cells. We found that HKS vaccination induced the formation of memory CD8+ T cells in the spleen and liver, and importantly, liver TRM cells were fewer in number than that induced by RAS. Crucially, we showed the number of TRM cells was significantly higher when HKS were combined with the glycolipid α-galactosylceramide as an adjuvant. In the future, this work could lead to development of an antimalaria vaccination strategy that does not require live sporozoites, providing greater utility.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号