首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   164篇
  免费   28篇
基础医学   19篇
临床医学   31篇
内科学   98篇
皮肤病学   2篇
特种医学   2篇
外科学   24篇
综合类   2篇
预防医学   9篇
药学   2篇
肿瘤学   3篇
  2022年   3篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2014年   3篇
  2013年   2篇
  2012年   9篇
  2011年   4篇
  2010年   1篇
  2009年   4篇
  2008年   4篇
  2007年   4篇
  2006年   8篇
  2005年   9篇
  2004年   9篇
  2003年   10篇
  2002年   12篇
  2001年   9篇
  2000年   5篇
  1999年   7篇
  1998年   1篇
  1997年   2篇
  1996年   4篇
  1995年   4篇
  1994年   6篇
  1993年   1篇
  1992年   4篇
  1991年   6篇
  1990年   7篇
  1989年   4篇
  1988年   4篇
  1987年   4篇
  1986年   3篇
  1985年   2篇
  1984年   4篇
  1983年   6篇
  1981年   4篇
  1980年   4篇
  1979年   2篇
  1978年   1篇
  1971年   3篇
  1970年   1篇
  1969年   2篇
  1967年   2篇
  1966年   3篇
  1962年   1篇
排序方式: 共有192条查询结果,搜索用时 15 毫秒
1.
Prolactin (PRL) and other trophic factors rapidly activate a nuclear pool(s) of protein kinase C (nPKC) in purified splenocyte nuclei. The PRL also enhanced [2-3H]glycerol incorporation into nuclear mono- and triacylglycerol. An assay was devised which not only probed the ability of the hormone to activate protein kinase C (PKC) but also demonstrated the presence of nuclear substrates. Using this methodology, a biphasic concentration-response curve to PRL was observed. Heterologous species of PRL and various growth factors also activated nPKC. The PRL-induced nPKC stimulation was antagonized by various immunomodulators, G protein-coupling inhibitors, PKC inhibitors, a calmodulin inhibitor, and a peripheral benzodiazepine agonist and antagonist. A monoclonal antibody to PKC, anti-rat PRL antiserum and a monoclonal anti-rat PRL receptor antibody antagonized PRL-induced PKC-dependent nuclear phosphorylation, further implicating nPKC and a PRL receptor-mediated activation process. Nuclear PKC may be a major target for trophic regulation in response to both positive and negative growth signals.  相似文献   
2.
Volume expansion in the presence of elevated aldosterone availabilityis a hallmark of normal pregnancy. Intravascular volume depletioncharacterizes severe pregnancy-associated disease conditionssuch as intra-uterine growth retardation, chronic hypertensionor pre-eclampsia [1]. Two hypotheses have been forwarded toexplain volume depletion in pregnancy: the first hypothesischarges inappropriate sensing of vascular ‘overfilling’,resulting in an increased transendothelial loss of fluid tothe extravascular compartment. In contrast, the second hypothesisfocuses on vascular ‘underfilling’ due to inappropriatelylow aldosterone levels. The second hypothesis is based on theassumption that a compensatory increase in the circulating fluidvolume is required in normal pregnancy to support fetal substratedelivery. According to the second concept, maternal blood pressureincreases due to counter-regulatory mechanisms when placentalblood supply is reduced [2]. In support of the ‘underfilling’hypothesis are observations that a  相似文献   
3.
Insulin was found to provoke rapid increases in diacylglycerol (DAG) content and [3H]glycerol incorporation into DAG and other lipids during incubations of rat hemidiaphragms and soleus muscles. Insulin also rapidly increased phosphatidic acid and total glycerolipid labeling by [3H]glycerol, suggesting that insulin increases DAG production at least partly through stimulation of the de novo pathway. Increased DAG production may activate protein kinase C (PKC) as reported previously in the rat diaphragm. We also observed apparent insulin-induced translocation of PKC from cytosol to membrane in the rat soleus muscle. The importance of insulin-induced increases in DAG-PKC signaling in the stimulation of glucose transport in rat diaphragm and soleus muscles was suggested by 1) PKC activators phorbol esters and phospholipase C stimulation of [3H]-2-deoxyglucose (DOG) uptake and 2) PKC inhibitors staurosporine and polymixin B inhibition of insulin effects on [3H]-2-DOG uptake. Although phorbol ester was much less effective than insulin in the diaphragm, phospholipase C provoked increases in [3H]-2-DOG uptake that equaled or exceeded those of insulin. In the soleus muscle, phorbol ester, like phospholipase C, was only slightly but not significantly less effective than insulin. Similar variability in effectiveness of phorbol ester has also been noted previously in rat adipocytes (weak) and BC3H1 myocytes (strong), whereas DAG, added exogenously or generated by phospholipase C treatment, stimulates glucose transport to a degree that is quantitatively more comparable to that of insulin in each of the four tissues. Differences in effectiveness of phorbol ester and DAG could not be readily explained by postulating that the latter acts independently of PKC, because DAG provoked the apparent translocation of the enzyme from cytosol to membranes in rat adipocytes, and effects of DAG on [3H]-2-DOG uptake were blocked by inhibitors of PKC in both rat adipocytes and BC3H1 myocytes. Collectively, our findings provide further support for the hypothesis that insulin increases DAG production and PKC activity, and these processes are important in the stimulation of glucose transport in rat skeletal muscle and other tissues.  相似文献   
4.
The rare apolipoprotein C-II (apoC-II) mutation, apoC-IILys19→Thr, also known as apoC-II-v, has been found previously in association with hyperlipoproteinemia. From a lipid clinic screening we identified three unrelated individuals who had the apoC-IILys19→Thr mutation. Among eight family members of one proband, we have found another four who were affected. None of the inviduals in this kindred is dyslipidemic and there is no difference in lipid levels between affected and unaffected family members. Therefore, we conclude that the presence of this apolipoprotein variant by itself has no effect on lipoprotein levels. In addition, the apolipoprotein E (apoE) isoform, apoE4 does not have a synergistic effect on lipoprotein levels in this kindred, in contrast to observations on the interaction of apoE4 with another apoC-II mutant (apoC-IIToronto). The single nucleotide substitution that causes the apoC-IILys19→Thr variant introduces a previously unrecognized restriction site (for Mae III), that provides for easy screening.  相似文献   
5.
6.
The present studies were conducted to determine whether prostaglandin F2 alpha (PGF2 alpha) stimulates the production of "second messengers" derived from inositol phospholipid hydrolysis and increases intracellular free Ca2+ ([Ca2+]i) in isolated bovine luteal cells. PGF2 alpha provoked rapid (10 sec) and sustained (up to 60 min) increases in the levels of inositol mono-, bis-, and trisphosphates (InsP, InsP2, and InsP3, respectively). InsP3 was formed more rapidly than InsP2 or InsP after PGF2 alpha treatment. In addition, PGF2 alpha increased inositol phospholipid turnover, as evidenced by increased 32PO4 incorporation into phosphatidic acid and phosphatidylinositol. LiCl (1-20 mM) enhanced inositol phosphate accumulation in response to PGF2 alpha. Maximal increases in InsP3 occurred at 1 microM PGF2 alpha, with half-maximal stimulation occurring at 36 nM. The acute effects of PGF2 alpha on InsP3 levels were independent of reductions in extracellular calcium. Prostaglandins E1 and E2 also stimulated increases in inositol phosphate levels, albeit to a lesser extent. PGF2 alpha also induced rapid and concentration-dependent increases in [Ca2+]i as measured by quin-2 fluorescence. The PGF2 alpha-induced increases in [Ca2+]i were maximal within 30 sec (approximately 2- to 3-fold), and [Ca2+]i remained elevated for 8-10 min. The PGF2 alpha-induced increases in [Ca2+]i were also independent of extracellular calcium. These findings demonstrate that the action of PGF2 alpha is coupled to the phospholipase C-InsP3 and diacylglycerol second messenger system in the corpus luteum.  相似文献   
7.
Insulin resistance in obesity is partly due to diminished glucose transport in myocytes and adipocytes, but underlying mechanisms are uncertain. Insulin-stimulated glucose transport requires activation of phosphatidylinositol (PI) 3-kinase (3K), operating downstream of insulin receptor substrate-1. PI3K stimulates glucose transport through increases in PI-3,4,5-(PO(4))(3) (PIP(3)), which activates atypical protein kinase C (aPKC) and protein kinase B (PKB/Akt). However, previous studies suggest that activation of aPKC, but not PKB, is impaired in intact muscles and cultured myocytes of obese subjects. Presently, we examined insulin activation of glucose transport and signaling factors in cultured adipocytes derived from preadipocytes harvested during elective liposuction in lean and obese women. Relative to adipocytes of lean women, insulin-stimulated [(3)H]2-deoxyglucose uptake and activation of insulin receptor substrate-1/PI3K and aPKCs, but not PKB, were diminished in adipocytes of obese women. Additionally, the direct activation of aPKCs by PIP(3) in vitro was diminished in aPKCs isolated from adipocytes of obese women. Similar impairment in aPKC activation by PIP(3) was observed in cultured myocytes of obese glucose-intolerant subjects. These findings suggest the presence of defects in PI3K and aPKC activation that persist in cultured cells and limit insulin-stimulated glucose transport in adipocytes and myocytes of obese subjects.  相似文献   
8.
9.
10.
Chen HC  Stone SJ  Zhou P  Buhman KK  Farese RV 《Diabetes》2002,51(11):3189-3195
Acyl coenzyme A:diacylglycerol acyltransferase 1 (DGAT1) is one of two DGAT enzymes known to catalyze the final step in mammalian triglyceride synthesis. Mice deficient in DGAT1 are resistant to obesity and have enhanced insulin sensitivity. To understand better the relationship between triglyceride synthesis and energy and glucose metabolism, we generated transgenic (aP2-Dgat1) mice in which expression of murine DGAT1 in the white adipose tissue (WAT) was twofold higher than normal. aP2-Dgat1 mice that were fed a regular diet had larger adipocytes and greater total fat pad weight than wild-type (WT) mice. In response to a high-fat diet, aP2-Dgat1 mice became more obese ( approximately 20% greater body weight after 15 weeks) than WT mice. However, the increase in adiposity in aP2-Dgat1 mice was not associated with impaired glucose disposal, as demonstrated by glucose and insulin tolerance tests. Correlating with this finding, triglyceride deposition in the liver and skeletal muscle, two major target tissues of insulin, was similar in aP2-Dgat1 and WT mice. Thus, DGAT1 overexpression in murine WAT provides a model in which obesity does not impair glucose disposal. Our findings support the lipotoxicity hypothesis that the deposition of triglycerides in insulin-sensitive tissues other than adipocytes causes insulin resistance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号