首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   185206篇
  免费   1588篇
  国内免费   101篇
耳鼻咽喉   1221篇
儿科学   6824篇
妇产科学   3292篇
基础医学   17731篇
口腔科学   1966篇
临床医学   13113篇
内科学   33212篇
皮肤病学   784篇
神经病学   17330篇
特种医学   9302篇
外科学   30466篇
综合类   2340篇
预防医学   18464篇
眼科学   2882篇
药学   10026篇
中国医学   654篇
肿瘤学   17288篇
  2023年   79篇
  2022年   189篇
  2021年   388篇
  2020年   224篇
  2019年   338篇
  2018年   22235篇
  2017年   17591篇
  2016年   19759篇
  2015年   1261篇
  2014年   1347篇
  2013年   1358篇
  2012年   7820篇
  2011年   21838篇
  2010年   19246篇
  2009年   11937篇
  2008年   20130篇
  2007年   22360篇
  2006年   1125篇
  2005年   2727篇
  2004年   3941篇
  2003年   4773篇
  2002年   2837篇
  2001年   329篇
  2000年   462篇
  1999年   240篇
  1998年   264篇
  1997年   267篇
  1996年   140篇
  1995年   150篇
  1994年   149篇
  1993年   108篇
  1992年   65篇
  1991年   124篇
  1990年   152篇
  1989年   104篇
  1988年   74篇
  1987年   53篇
  1986年   39篇
  1985年   38篇
  1984年   33篇
  1983年   30篇
  1982年   33篇
  1980年   45篇
  1974年   24篇
  1938年   60篇
  1937年   25篇
  1935年   22篇
  1934年   30篇
  1932年   56篇
  1930年   46篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Magnetic field generated by neuronal activity could alter magnetic resonance imaging (MRI) signals but detection of such signal is under debate. Previous researches proposed that magnitude signal change is below current detectable level, but phase signal change (PSC) may be measurable with current MRI systems. Optimal imaging parameters like echo time, voxel size and external field direction, could increase the probability of detection of this small signal change. We simulate a voxel of cortical column to determine effect of such parameters on PSC signal. We extended a laminar network model for somatosensory cortex to find neuronal current in each segment of pyramidal neurons (PN). 60,000 PNs of simulated network were positioned randomly in a voxel. Biot–savart law applied to calculate neuronal magnetic field and additional phase. The procedure repeated for eleven neuronal arrangements in the voxel. PSC signal variation with the echo time and voxel size was assessed. The simulated results show that PSC signal increases with echo time, especially 100/80 ms after stimulus for gradient echo/spin echo sequence. It can be up to 0.1 mrad for echo time = 175 ms and voxel size = 1.48 × 1.48 × 2.18 mm3. With echo time less than 25 ms after stimulus, it was just acquired effects of physiological noise on PSC signal. The absolute value of the signal increased with decrease of voxel size, but its components had complex variation. External field orthogonal to local surface of cortex maximizes the signal. Expected PSC signal for tactile detection in the somatosensory cortex increase with echo time and have no oscillation.  相似文献   
2.
3.
4.
5.
6.
Farnesyltransferase (FTase) is one of the prenyltransferase family enzymes that catalyse the transfer of 15-membered isoprenoid (farnesyl) moiety to the cysteine of CAAX motif-containing proteins including Rho and Ras family of G proteins. Inhibitors of FTase act as drugs for cancer, malaria, progeria and other diseases. In the present investigation, we have developed two structure-based pharmacophore models from protein–ligand complex (3E33 and 3E37) obtained from the protein data bank. Molecular dynamics (MD) simulations were performed on the complexes, and different conformers of the same complex were generated. These conformers were undergone protein–ligand interaction fingerprint (PLIF) analysis, and the fingerprint bits have been used for structure-based pharmacophore model development. The PLIF results showed that Lys164, Tyr166, TrpB106 and TyrB361 are the major interacting residues in both the complexes. The RMSD and RMSF analyses on the MD-simulated systems showed that the absence of FPP in the complex 3E37 has significant effect in the conformational changes of the ligands. During this conformational change, some interactions between the protein and the ligands are lost, but regained after some simulations (after 2 ns). The structure-based pharmacophore models showed that the hydrophobic and acceptor contours are predominantly present in the models. The pharmacophore models were validated using reference compounds, which significantly identified as HITs with smaller RMSD values. The developed structure-based pharmacophore models are significant, and the methodology used in this study is novel from the existing methods (the original X-ray crystallographic coordination of the ligands is used for the model building). In our study, along with the original coordination of the ligand, different conformers of the same complex (protein–ligand) are used. It concluded that the developed methodology is significant for the virtual screening of novel molecules on different targets.  相似文献   
7.
This paper takes a somewhat slant perspective on flourishing and care in the context of suffering, death and dying, arguing that care in this context consists principally of ‘acts of work and courage that enable flourishing’. Starting with the perception that individuals, society and health care professionals have become dulled to death and the process of dying in Western advanced health systems, it suggests that for flourishing to occur, both of these aspects of life need to be faced more directly. The last days of life need to be ‘undulled’. Reflections upon the experiences of the author as carer and daughter in the face of her mother’s experience of death are used as basis for making suggestions about how care systems and professionals might better assist people in dealing with ‘the most grown up thing’ humans ever do, which is to die.  相似文献   
8.
9.

Purpose

This study aimed to investigate 3 planning target volume (PTV) margin expansions and determine the most appropriate volume to be used in bladder preservation therapy when using daily cone beam computed tomography (CBCT). We aimed to establish whether a smaller PTV expansion is feasible without risking geographical miss.

Methods and materials

The study included patients with bladder cancer who were treated with a hypofractionated course of radiation therapy delivered with intensity modulated radiation therapy. The clinical target volume (CTV) was the whole empty bladder, and the PTV consisted of a 1.5-cm margin around the bladder (PTV1.5 cm). Patients underwent daily CBCT imaging before treatment to assess the bladder volume and ensure accurate positioning. We investigated 2 additional smaller PTV margin expansions to determine the most appropriate volume to be used with CBCT as a daily image guided radiation therapy modality. These margins were created retrospectively on every CBCT. The first additional volume was a uniform PTV margin of the surrounding 1 cm (PTV1 cm). When considering that the majority of the internal bladder movement was due to the variation in filling that occurs in the superior and anterior directions, a second volume of an anisotropic PTV margin with a 1.5-cm superior/anterior and 1 cm in other directions (PTV1/1.5 cm) was created. We recorded the frequency and measured the volume of bladder falling out of each PTV based on the daily CBCT.

Results

For the purpose of this study, we considered an arbitrary 5 cm3 of CTV falling out of the designated PTV as a clinically significant volumetric miss. The frequency of such a miss when applying the uniform PTV1 cm was 1%. However, when applying the uniform PTV1.5 cm and anisotropic PTV1/1.5 cm margins, the frequency was 0.5% and 0.5%, respectively.

Conclusions

The anisotropic PTV expansion of 1.5 cm superiorly and anteriorly and 1 cm in all other directions around the bladder (CTV) provides a safe PTV approach when daily CBCT imaging is used to localize an empty bladder.  相似文献   
10.
Advancing nanomedicines from concept to clinic requires integration of new science with traditional pharmaceutical development. The medical and commercial success of nanomedicines is greatly facilitated when those charged with developing nanomedicines are cognizant of the unique opportunities and technical challenges that these products present. These individuals must also be knowledgeable about the processes of clinical and product development, including regulatory considerations, to maximize the odds for successful product registration. This article outlines these topics with a goal to accelerate the combination of academic innovation with collaborative industrial scientists who understand pharmaceutical development and regulatory approval requirements—only together can they realize the full potential of nanomedicines for patients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号