首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   1篇
内科学   2篇
  2010年   1篇
  2002年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
Abstract: Methamphetamine (METH), the most commonly abused drug, has long been known to induce neurotoxicity. METH causes oxidative stress and inflammation, as well as the overproduction of both reactive oxygen species (ROS) and reactive nitrogen species (RNS). The role of METH‐induced brain inflammation remains unclear. Imbroglio activation contributes to the neuronal damage that accompanies injury, disease and inflammation. METH may activate microglia to produce neuroinflammatory molecules. In highly aggressively proliferating immortalized (HAPI) cells, a rat microglial cell line, METH reduced cell viability in a concentration‐ and time‐dependent manner and initiated the expression of interleukin 1β (IL‐1β), interleukin 6 (IL‐6) and tumor necrosis factor α. METH also induced the production of both ROS and RNS in microglial cells. Pretreatment with melatonin, a major secretory product of the pineal gland, abolished METH‐induced toxicity, suppressed ROS and RNS formation and also had an inhibitory effect on cytotoxic factor gene expression. The expression of cytotoxic factors produced by microglia may contribute to central nervous system degeneration in amphetamine abusers. Melatonin attenuates METH toxicity and inhibits the expression of cytotoxic factor genes associated with ROS and RNS neutralization in HAPI microglia. Thus, melatonin might be one of the neuroprotective agents induced by METH toxicity and/or other immunogens.  相似文献   
2.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号