首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
内科学   4篇
  2022年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Barille  S; Collette  M; Bataille  R; Amiot  M 《Blood》1995,86(8):3151-3159
Previous studies have shown that bone marrow, especially the bone microenvironment, may play an important role in the pathogenesis of multiple myeloma (MM). To elucidate the relationship between myeloma cells and bone cells, mainly osteoblasts, we have established a coculture system between two interleukin-6 (IL-6)-dependent myeloma cell lines, XG1 and XG6, and the osteosarcoma cell lines Saos-2 and MG63. Both osteosarcoma cell lines have retained major functions of normal osteoblasts; principally, the capacity to produce hematopoietic growth factors (including IL-6) and osteocalcin, a noncollagenic protein essential in the bone formation process. Because IL-6 is a critical growth factor in MM, we have examined the IL-6 osteoblastic cell production in our coculture system. XG1 cells strongly upregulate IL-6 production by MG63 and Saos-2 cells. Of major interest, the triggering of IL-6 is totally dependent on the physical contact between myeloma cells and osteoblastic cells, contact that is partly mediated by CD44, CD56, and fibronectin interactions. Osteocalcin production by MG63 and Saos-2 cells has previously been shown to be dependent on 1,25- (OH)2D3. We demonstrate that XG1 and XG6 cells reduced the amount of osteocalcin in MG63 coculture cell supernatants, a reduction that is partly mediated by a soluble factor and by cell-to-cell contact. Notably, whereas one of the myeloma cell lines, XG6, has lost its capacity to stimulate IL-6 production by osteoblastic cell lines, both XG1 and XG6 cell lines remain able to reduce the osteocalcin amount, indicating that IL-6 and osteocalcin levels are regulated by two different pathways. In conclusion, these data strongly support the concept that the bone microenvironment is directly modified by contact with myeloma cells and are consistent with the characteristics observed in vivo in patients with MM patients, ie, abnormally high IL-6 and low osteocalcin levels, respectively.  相似文献   
2.
We have previously shown that malignant plasma cells expressed the specific receptor for 1,25-dihydroxyvitamin D3 and that this derivative could significantly inhibit the proliferation of such malignant cells. More recently, new vitamin D3 derivatives have been generated with extraordinarily potent inhibitory effects on leukemic cell growth in vitro. These new data prompted us to (re)investigate the capacity of such new vitamin D3 derivatives to inhibit myeloma cell growth in comparison with that of dexamethasone, a potent antitumoral agent in multiple myeloma. In the current study, we show that EB1089, a new vitamin D3 derivative, (1) induces G1 growth arrest of human myeloma cells, which is only partially reversed by interleukin-6 (IL-6); (2) induces apoptosis in synergy with dexamethasone, IL-6, leukemia- inhibitory factor, and Oncostatin M, with an agonistic anti-gp130 monoclonal antibody being unable to prevent this apoptosis; (3) downregulates both the gp80 (ie, the alpha chain of the IL-6 receptor [IL-6Ralpha]) expression on malignant plasma cells and the production of soluble IL-6Ralpha, and finally (4) inhibits the deleterious upregulation of gp80 expression induced by dexamethasone while limiting the dexamethasone-induced upregulation of gp130 expression. Considering that these in vitro effects of EB1089 have been observed at doses obtainable in vivo (without hypercalcemic effects), our present data strongly suggest that EB1089 could have a true interest in the treatment of multiple myeloma, especially in association with dexamethasone.  相似文献   
3.
4.
CuIn1-xZnxSe2 powders with various atomic percentages (x = 0, 0.05, 0.11, 0.16 and 0.21) were synthesized with the solvothermal method using metal chlorides and ethylendiamine as sources of precursors and a solvent, respectively. The experiment aims to investigate the effect of atomic percentages of Znx compounds on the structural and optical properties of CuIn1-xZnxSe2 in order to improve future technological applications based on this material. The powders’ chalcopyrite phases were identified by X-ray diffraction. Energy dispersive X-ray spectroscopy analysis revealed the presence of Cu, In, Zn and Se with the expected atomic ratio of Zn/(In + Zn). Scanning electron microscopy and transmission electron microscopy analysis showed that the powders have large-scale desert rose-like structures. The nanopowders’ optical study by UV-visible spectrophotometry showed that the CuIn1-xZnxSe2 energy gap values increase with the molar fraction of Znx. A change from 1.15 to 1.4 eV was observed.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号