首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90篇
  免费   1篇
  国内免费   2篇
耳鼻咽喉   1篇
儿科学   11篇
基础医学   4篇
临床医学   3篇
内科学   33篇
特种医学   1篇
外科学   33篇
预防医学   4篇
眼科学   1篇
药学   1篇
肿瘤学   1篇
  2023年   1篇
  2021年   3篇
  2020年   3篇
  2019年   3篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2014年   5篇
  2013年   5篇
  2012年   2篇
  2011年   5篇
  2010年   4篇
  2009年   14篇
  2008年   8篇
  2007年   5篇
  2006年   8篇
  2005年   1篇
  2004年   6篇
  2003年   2篇
  1999年   1篇
  1992年   1篇
  1990年   1篇
  1978年   1篇
  1977年   2篇
  1970年   1篇
  1969年   1篇
  1968年   2篇
  1967年   1篇
排序方式: 共有93条查询结果,搜索用时 15 毫秒
1.
The routine clinical use of gated SPECT is inhibited by sophisticated, time-consuming processing techniques. The present paper describes a new technique for the simultaneous three-dimensional presentation of the amplitude and phase of the first Fourier harmonics, with the aim of obtaining detailed information about the ventricular motion in a relatively short time, from each angle of view of three-dimensional space. The method is simple and robust, and processing is automatic. It does not need carefully elaborated techniques for surface determination, because the cardiac surface is merely used as a reference skeleton onto which the functional information of amplitude and phase is mapped. The Fourier analysis before reconstruction results in running times shorter than 15 min and may further open the way for the routine use of gated SPECT.  相似文献   
2.
3.
Clinical Rheumatology - This study aimed to evaluate the risk for atherosclerosis by using echocardiographic arterial stiffness (AS) parameters and serum endocan levels, as a biomarker of...  相似文献   
4.
5.
6.
7.
All terrestrial animals must find a proper level of moisture to ensure their health and survival. The cellular-molecular basis for sensing humidity is unknown in most animals, however. We used the model nematode Caenorhabditis elegans to uncover a mechanism for sensing humidity. We found that whereas C. elegans showed no obvious preference for humidity levels under standard culture conditions, worms displayed a strong preference after pairing starvation with different humidity levels, orienting to gradients as shallow as 0.03% relative humidity per millimeter. Cell-specific ablation and rescue experiments demonstrate that orientation to humidity in C. elegans requires the obligatory combination of distinct mechanosensitive and thermosensitive pathways. The mechanosensitive pathway requires a conserved DEG/ENaC/ASIC mechanoreceptor complex in the FLP neuron pair. Because humidity levels influence the hydration of the worm’s cuticle, our results suggest that FLP may convey humidity information by reporting the degree that subcuticular dendritic sensory branches of FLP neurons are stretched by hydration. The thermosensitive pathway requires cGMP-gated channels in the AFD neuron pair. Because humidity levels affect evaporative cooling, AFD may convey humidity information by reporting thermal flux. Thus, humidity sensation arises as a metamodality in C. elegans that requires the integration of parallel mechanosensory and thermosensory pathways. This hygrosensation strategy, first proposed by Thunberg more than 100 y ago, may be conserved because the underlying pathways have cellular and molecular equivalents across a wide range of species, including insects and humans.Moisture is essential for life. As such, many animals have adapted different behavioral mechanisms to migrate toward their preferred moisture level (hygrotaxis) (16). For instance, Drosophila avoid high humidity that impedes flight, whereas green frogs orient toward high humidity to maintain hydration (5, 6). Animals also sense moisture levels to determine important information about their environment; for example, moths detect humidity levels around flowers to deduce which ones might be damaged and contain less nectar (7). These behaviors are often critical to keep an animal within its niche and regulate essential processes such as growth and reproduction. Thus, it is surprising that the molecular basis for how different humidity levels are detected and encoded by the nervous system (hygrosensation) remains unknown in most animals.The search for humidity receptors has achieved the most progress in insects. For instance, distinct sets of hygrosensitive neurons have been found in dome-shaped organs on the antenna of the giant cockroach (8). One set activates with moist air, and the other set responds to dry air. Similar moist and dry receptive neurons have been detected in the branched arista subsegment of the antennae in adult Drosophila (9). Removal of the arista or deletion of any one of three TRP channels expressed in the arista prevents hygrotaxis (5, 9). These TRP channels represent tantalizing candidates for moisture receptors because different TRP channels were required for activity of moist or dry neuronal responses (9). Whether these TRP channels contribute to hygrosensation in other animals remains to be seen, however.Humidity also can be detected by animals that lack branched organs or hair that changes shape with hydration. In 1905, Thunberg (10) proposed that humidity may be perceived in humans as the synthesis of mechanical distension associated with changes in skin hydration, along with temperature signals from the rate of evaporative cooling. This old idea might apply to other animals as well; for instance, the hygrosensitive organs in cockroach and Drosophila also house thermosensitive neurons (8, 11). Whether paired thermosensitive neurons are required for hygrosensation in insects or, for that matter, whether any animal (including humans) senses humidity via this mechanism, remains unknown.To gain information about the neuromolecular basis for hygrosensation, we studied how the free-living nematode Caenorhabditis elegans responds to humidity gradients. This model has been used to successfully elucidate neuronal mechanisms and molecules critical for diverse sensory pathways (1214). We expected C. elegans to be sensitive to humidity because its small volume (∼3.8 × 106 μm3) and hydrostatic skeleton make it vulnerable to desiccation and overhydration, which are often lethal to this tiny (∼1 mm) worm (15). Although C. elegans does not feature an arista-like appendage, its completely described nervous system of 302 neurons conveniently limits the search for candidate hygroreceptive neurons. Here we report that C. elegans appears to use a strategy for hygrosensation first predicted by Thunberg (10) that combines dual mechanosensory and thermosensory pathways.  相似文献   
8.
9.
Aim: To emphasize the importance of a detailed observation for incidental simultaneous tumoral masses during surgery for gastrointestinal stromal tumors (GISTs) at any location in the gastrointestinal system. Case presentations: Case 1: a 39 years old female patient with an esophageal squamous cell carcinoma and a synchronous small intestinal GIST discovered incidentally during esophagectomy.

Case 2: a 73 years old female patient with a gastric GIST and a synchronous colorectal cancer detected incidentally during gastrectomy. In both cases, immunohistochemical examinations of the resected specimens confirmed the coexistences of GISTs and epithelial malignancies.

Conclusion: The coexistences of GISTs with epithelial tumors have been increasing in recent years. In any case of a GIST or gastrointestinal adenocarcinoma, the surgeon should be alert to recognize a possible coexistent tumor with different histological origin.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号