首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   1篇
基础医学   18篇
临床医学   2篇
内科学   27篇
外科学   3篇
眼科学   1篇
药学   2篇
肿瘤学   1篇
  2021年   3篇
  2019年   2篇
  2018年   1篇
  2015年   1篇
  2014年   2篇
  2013年   3篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2008年   6篇
  2007年   3篇
  2006年   6篇
  2005年   3篇
  2004年   8篇
  2003年   5篇
  2002年   4篇
  1999年   1篇
  1998年   1篇
排序方式: 共有54条查询结果,搜索用时 15 毫秒
1.
The role of an interleukin (IL)-1 receptor antagonist (IL-1Ra) on the development of airway hyperresponsiveness (AHR) and airway inflammation following acute O(3) exposure in mice was investigated. Exposure of C57/BL6 mice to O(3) at a concentration of 2.0 ppm or filtered air for 3 h resulted in increases in airway responsiveness to inhaled methacholine (MCh) 8 and 16 h after the exposure, and an increase in neutrophils in the bronchoalveolar lavage (BAL) fluid. IL-1beta expression, assessed by gene microarray, was increased 2-fold 4 h after O(3) exposure, and returned to baseline levels by 24 h. Levels of IL-1beta in lung homogenates were also increased 8 h after O(3) exposure. Administration of (human) IL-1Ra before and after O(3) exposure prevented development of AHR and decreased BAL fluid neutrophilia. Increases in chemokine levels in lung homogenates, tumor necrosis factor-alpha, MIP-2, and keratinocyte chemoattractant following O(3) exposure were prevented by IL-1Ra. Inhalation of dexamethasone, an inhibitor of IL-1 production, blocked the development of AHR, BAL fluid neutrophilia, and decreased levels of IL-1 following O(3) exposure. In summary, acute exposure to O(3) induces AHR, neutrophilic inflammation, epithelial damage, and IL-1. An IL-1Ra effectively prevents the development of altered airway function, inflammation, and structural damage.  相似文献   
2.
3.
Recently, there has been significant interest in the utilization of ultrasound for chronic pain management procedures. Traditional visualization techniques for these procedures include fluoroscopy and computed tomography, and even MRI. With fluoroscopic guided procedures, the initial extrapolation of the position of soft tissues (i.e. muscles, blood vessels, and nerves) is based on their anatomic relationship to viewed bony structures. The interest in the use of ultrasound for chronic pain management procedures has grown from certain visualization advantages including the ability to see muscle layers, nerves and blood vessels. Ultrasound allows for the elimination or reduction of radiation exposure for both the patient and physician. Additionally, real time needle advancement can be visualized with ultrasound, as well as the diffusion of the injected solution. Limitations to current ultrasound technology exist, — i.e acoustic shadow artefact, narrow image windows — which result in the inability to view structures deep to bony obstruction, but techniques are rapidly progressing, allowing to extend and increase the indications in the field of pain medicine.  相似文献   
4.
We have previously shown that microtubule disruption results in an increase in cell adhesion to ECM proteins. In this work we show that this enhanced cell attachment was completely abolished by specific inhibitors of tyrosine-kinases, PI3-K and PKCs. Microtubule depolymerisation was associated with an important increased in tyrosine phosphorylation of FAK and paxilline, as well as with subcellular localisation of PKCgamma, delta and epsilon. We also observed significant alterations in actin cytoskeleton leading to reduced cell spreading. Thus, microtubule depolymerisation appears to activate various intracellular kinases that lead to actin cytoskeletal changes and to an increase of integrin-dependent adhesion. Whether this enhanced attachment is due to intracellular events resulting in changes in integrin affinity or avidity remains to be determined.  相似文献   
5.
Sensory neuropeptides are localized to airway nerves and endocrine cells in both human and animal species and may participate in the development of airway inflammation and hyperresponsiveness (AHR). We used a mouse model to identify the changes that occur in calcitonin gene-related peptide (CGRP) expression in the airways during development of allergic inflammation and to investigate the potential role of this neuropeptide in modulating AHR. In sensitized mice, allergen challenge induced eosinophilic airway inflammation and AHR and resulted in considerable depletion of CGRP in neuroepithelial bodies and submucosal nerve plexuses without altering the overall density of airway nerve fibers. This depletion was subsequent to the development of airway inflammation and was prevented by anti-very late antigen-4 and anti-interleukin-5 treatments, which blocked airway eosinophilia and abolished AHR. Administration of CGRP to sensitized and challenged mice resulted in the normalization of airway responsiveness to inhaled methacholine, an effect that was neutralized by the receptor antagonist CGRP(8-37). These data demonstrate that replacement of CGRP following its depletion in allergic mice can reverse the changes in airway responsiveness and suggest that CGRP may have potential for the treatment of allergic AHR.  相似文献   
6.
BACKGROUND: Eosinophils play a major role in allergic airway inflammation because of their ability to release toxic mediators. In addition, they are able to migrate toward draining thoracic lymph nodes (TLNs) after intratracheal administration, where they can function as antigen-presenting cells. OBJECTIVE: In this study, we evaluated in vivo eosinophil migration toward the TLN after allergen sensitization and analyzed expression of molecules involved in antigen presentation. METHODS: Mice were sensitized by intraperitoneal injection of ovalbumin on days 1 and 10 and challenged once intranasally with ovalbumin on day 20. The kinetics of eosinophilia was evaluated in blood, lung tissue homogenate, bronchoalveolar lavage fluid, and TLN. Cell surface staining was analyzed by flow cytometry. RESULTS: The kinetics of eosinophil recruitment was similar in TLN, lung tissue, and blood, beginning at 12 hours and peaking at 48 hours after allergen challenge. Approximately 70% of TLN eosinophils expressed MHC class II molecules, compared with less than 25% in blood and lungs. Moreover, TLN eosinophils expressed higher levels of MHC class II and CD86 compared with blood and lung eosinophils. Most eosinophils expressed CD80 and CD54, whereas only a few eosinophils expressed CD40. Eosinophils in lungs and TLN appeared to be activated with lower CD62-ligand expression compared with blood eosinophils. CONCLUSION: The presence of eosinophils with a different phenotype in the TLN at early time points after allergen challenge of sensitized mice supports their capacity to serve as antigen-presenting cells, sustaining allergic/inflammatory responses in the airways.  相似文献   
7.
Although national asthma guidelines help organize standards for asthma care, current asthma management is still primarily symptom based. Recent reports provide insights on how to improve asthma management through steps to better understand the natural history of asthma, individualize asthma care, reduce asthma exacerbations, manage inner city asthma, and some potential new ways to use available medications to improve asthma control. Despite many significant gains in managing asthma, we must now find improved strategies to prevent asthma exacerbations, alter the natural history of the disease, and to reduce health disparities in asthma care. Perhaps new directions in personalized medicine including a systems biology approach, along with improved health care access and communication will lead to better methods to alleviate the burden of asthma. This review will discuss the benefits and limitations of the current approach to asthma management, new studies that could impact new directions in asthma management, and new insights related to mechanisms of asthma and allergic airways inflammation that could eventually lead to improved asthma control.  相似文献   
8.
gammadelta T cells regulate airway reactivity, but their role in ozone (O3)-induced airway hyperresponsiveness (AHR) is not known. Our objective was to determine the role of gammadelta T cells in O3-induced AHR. Different strains of mice, including those that were genetically manipulated or antibody-depleted to render them deficient in total gammadelta T cells or specific subsets of gammadelta T cells, were exposed to 2.0 ppm of O3 for 3 hours. Airway reactivity to inhaled methacholine, airway inflammation, and epithelial cell damage were monitored. Exposure of C57BL/6 mice to O3 resulted in a transient increase in airway reactivity, neutrophilia, and increased numbers of epithelial cells in the lavage fluid. TCR-delta(-/-) mice did not develop AHR, although they exhibited an increase in neutrophils and epithelial cells in the lavage fluid. Similarly, depletion of gammadelta T cells in wild-type mice suppressed O3-induced AHR without influencing airway inflammation or epithelial damage. Depletion of Vgamma1+, but not of Vgamma4+ T cells, reduced O3-induced AHR, and transfer of total gammadelta T cells or Vgamma1+ T cells to TCR-delta(-/-) mice restored AHR. After transfer of Vgamma1+ cells to TCR-delta(-/-) mice, restoration of AHR after O3 exposure was blocked by anti-TNF-alpha. However, AHR could be restored in TCR-delta(-/-)mice by transfer of gammadelta T cells from TNF-alpha-deficient mice, indicating that another cell type was the source of TNF-alpha. These results demonstrate that TNF-alpha and activation of Vgamma1+ gammadelta T cells are required for the development of AHR after O3 exposure.  相似文献   
9.
We developed a sensitive polymerase chain reaction (PCR) panel, suitable for the detection of seven common respiratory viruses, to study the prevalence of viruses in nasal swabs obtained from clinically stable asthmatic children (n = 21), non-physician diagnosed asthmatic children with exercise-induced bronchoconstriction (EIB) (n = 16), and nonasthmatic, non-EIB controls (n = 33). The PCR panel detected viruses in 43/70 (61.4%) specimens but there were no significant differences in prevalence of these viruses between the three groups of children. These results indicate that clinically stable asthmatic and nonasthmatic children frequently harbor viruses in the upper respiratory tract.  相似文献   
10.
RATIONALE: There is conflicting information about the development and resolution of airway inflammation and airway hyperresponsiveness (AHR) after repeated airway exposure to allergen in sensitized mice. METHODS: Sensitized BALB/c and C57BL/6 mice were exposed to repeated allergen challenge on 3, 7, or 11 occasions. Airway function in response to inhaled methacholine was monitored; bronchoalveolar lavage fluid inflammatory cells were counted; and goblet cell metaplasia, peribronchial fibrosis, and smooth muscle hypertrophy were quantitated on tissue sections. Bone marrow-derived dendritic cells were generated after differentiation of bone marrow cells in the presence of growth factors. RESULTS: Sensitization to ovalbumin (OVA) in alum, followed by three airway exposures to OVA, induced lung eosinophilia, goblet cell metaplasia, mild peribronchial fibrosis, and peribronchial smooth muscle hypertrophy; increased levels of interleukin (IL)-4, IL-5, IL-13, granulocyte-macrophage colony-stimulating factor, transforming growth factor-beta(1), eotaxin-1, RANTES (regulated on activation, normal T-cell expressed and secreted), and OVA-specific IgG1 and IgE; and resulted in AHR. After seven airway challenges, development of AHR was markedly decreased as was the production of IL-4, IL-5, and IL-13. Levels of IL-10 in both strains and the level of IL-12 in BALB/c mice increased. After 11 challenges, airway eosinophilia and peribronchial fibrosis further declined and the cytokine and chemokine profiles continued to change. At this time point, the number of myeloid dendritic cells and expression of CD80 and CD86 in lungs were decreased compared with three challenges. After 11 challenges, intratracheal instillation of bone marrow-derived dendritic cells restored AHR and airway eosinophilia. CONCLUSIONS: These data suggest that repeated allergen exposure leads to progressive decreases in AHR and allergic inflammation, through decreases in myeloid dendritic cell numbers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号