首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   463篇
  免费   46篇
  国内免费   5篇
耳鼻咽喉   1篇
儿科学   18篇
妇产科学   4篇
基础医学   70篇
口腔科学   1篇
临床医学   50篇
内科学   116篇
皮肤病学   18篇
神经病学   47篇
特种医学   21篇
外科学   48篇
综合类   1篇
预防医学   42篇
眼科学   2篇
药学   29篇
肿瘤学   46篇
  2024年   2篇
  2023年   7篇
  2022年   18篇
  2021年   37篇
  2020年   24篇
  2019年   33篇
  2018年   42篇
  2017年   27篇
  2016年   24篇
  2015年   22篇
  2014年   33篇
  2013年   38篇
  2012年   50篇
  2011年   47篇
  2010年   20篇
  2009年   25篇
  2008年   18篇
  2007年   13篇
  2006年   10篇
  2005年   6篇
  2004年   8篇
  2003年   3篇
  2002年   5篇
  1973年   1篇
  1970年   1篇
排序方式: 共有514条查询结果,搜索用时 15 毫秒
1.
2.
Prevention Science - Screening is an essential prevention practice for a number of health conditions. However, screening coverage remains generally low. Studies that investigate determinants of...  相似文献   
3.
4.
5.
We report the first documented case of Bartonella henselae infection in a dog from France and the first isolation of B. henselae from a dog with fever of unknown origin. This observation contributes to the “One Health” concept focusing on zoonotic pathogens emerging from companion animals. A 1-year-old female German shepherd dog was referred for evaluation of fever of unknown origin of 1 month duration. Diagnostic investigations confirmed diffuse pyogranulomatous lymphadenitis. The dog became afebrile, and lymph node size normalized in response to a 6-week course of doxycycline. Retrospectively, Bartonella DNA was amplified from an EDTA-anticoagulated blood sample obtained before antimicrobial therapy, with the gtlA fragment sharing 99 % identity with the 350-bp gtlA fragment of the B. henselae Houston-1 strain. The same strain was isolated in the blood of three healthy cats from the household. Two months after discontinuation of doxycycline, the dog experienced a febrile relapse. Bartonella DNA was again amplified from blood prior to and immediately after administration of a 6-week course azithromycin therapy. However, without administration of additional medications, PCR was negative 9 months after azithromycin therapy and the dog remains clinically healthy 12 months following the second course of antibiotics. The medical management of this case raises several clinically relevant comparative infectious disease issues, including the extent to which Bartonella spp. contribute to fever of unknown origin and pyogranulomatous inflammatory diseases in dogs and humans, and the potential of doxycycline and azithromycin treatment failures. The possibility that dogs could constitute an underestimated reservoir for B. henselae transmission to people is also discussed.  相似文献   
6.
During the last several years, research has produced a significant amount of knowledge concerning the characteristics of human γδ T lymphocytes. Findings regarding the immune functions of these cells, particularly their natural killer cell-like lytic activity against tumor cells, have raised expectations for the therapeutic applications of these cells for cancer. Pharmaceutical companies have produced selective agonists for these lymphocytes, and several teams have launched clinical trials of γδ T cell-based cancer therapies. The findings from these studies include hematological malignancies (follicular lymphoma, multiple myeloma, acute and chronic myeloid leukemia), as well as solid tumors (renal cell, breast and prostate carcinomas), consisting of samples from more than 250 patients from Europe, Japan and the United States. The results of these pioneering studies are now available, and this short review summarizes the lessons learned and the role of γδ T cell-based strategies in the current landscape of cancer immunotherapies.  相似文献   
7.
Plasmodium falciparum and Toxoplasma gondii are widely studied parasites in phylum Apicomplexa and the etiological agents of severe human malaria and toxoplasmosis, respectively. These intracellular pathogens have evolved a sophisticated invasion strategy that relies on delivery of proteins into the host cell, where parasite-derived rhoptry neck protein 2 (RON2) family members localize to the host outer membrane and serve as ligands for apical membrane antigen (AMA) family surface proteins displayed on the parasite. Recently, we showed that T. gondii harbors a novel AMA designated as TgAMA4 that shows extreme sequence divergence from all characterized AMA family members. Here we show that sporozoite-expressed TgAMA4 clusters in a distinct phylogenetic clade with Plasmodium merozoite apical erythrocyte-binding ligand (MAEBL) proteins and forms a high-affinity, functional complex with its coevolved partner, TgRON2L1. High-resolution crystal structures of TgAMA4 in the apo and TgRON2L1-bound forms complemented with alanine scanning mutagenesis data reveal an unexpected architecture and assembly mechanism relative to previously characterized AMA–RON2 complexes. Principally, TgAMA4 lacks both a deep surface groove and a key surface loop that have been established to govern RON2 ligand binding selectivity in other AMAs. Our study reveals a previously underappreciated level of molecular diversity at the parasite–host-cell interface and offers intriguing insight into the adaptation strategies underlying sporozoite invasion. Moreover, our data offer the potential for improved design of neutralizing therapeutics targeting a broad range of AMA–RON2 pairs and apicomplexan invasive stages.Phylum Apicomplexa comprises >5,000 parasitic protozoan species, many of which cause devastating diseases on a global scale. Two of the most prevalent species are Toxoplasma gondii and Plasmodium falciparum, the causative agents of toxoplasmosis and severe human malaria, respectively (1, 2). The obligate intracellular apicomplexan parasites lead complex and diverse lifestyles that require invasion of many different cell types. Despite this diversity of target host cells, most apicomplexans maintain a generally conserved mechanism for active invasion (3). The parasite initially glides over the surface of a host cell and then reorients to place its apical end in close contact to the host-cell membrane. After this initial attachment, a circumferential ring of adhesion (termed the moving or tight junction) is formed, through which the parasite actively propels itself while concurrently depressing the host-cell membrane to create a nascent protective vacuole (4).Formation of the moving junction relies on a pair of highly conserved parasite proteins: rhoptry neck protein 2 (RON2) and apical membrane antigen 1 (AMA1). Initially, parasites discharge RON2 into the host cell membrane where an extracellular portion (domain 3; D3) serves as a ligand for AMA1 displayed on the parasite surface (58). Intriguingly, recent studies have shown that the AMA1–RON2 complex is an attractive target for therapeutic intervention (912). The importance of the AMA1–RON2 pairing is also reflected in the observation that many apicomplexan parasites encode functional paralogs that are generally expressed in a stage-specific manner (1315). We recently showed that, in addition to AMA1 and RON2, T. gondii harbors three additional AMA paralogs and two additional RON2 paralogs (14, 15): TgAMA2 forms a functional invasion complex with TgRON2 (15), TgAMA3 (also annotated as SporoAMA1) selectively coordinates TgRON2L2 (14), and TgAMA4 binds TgRON2L1 (15). Despite substantial sequence divergence, structural characterization of all AMA–RON2D3 complexes solved to date [TgAMA1–TgRON2D3 (16), PfAMA1–PfRON2D3 (17), and TgAMA3–TgRON2L2D3 (14)] reveal a largely conserved architecture and binding paradigm. Intriguingly, however, sequence analysis indicates that TgAMA4 and TgRON2L1 are likely to adopt substantially divergent structures with an atypical assembly mechanism.To investigate the functional implications of the AMA4–RON2L1 complex in T. gondii, we first established that TgAMA4 is part of a highly divergent AMA clade that includes the functionally important malaria vaccine candidate Plasmodium merozoite apical erythrocyte-binding ligand (MAEBL) (1820) and that TgRON2L1 displays a similar divergence consistent with coevolution of receptor and ligand. We then show that TgAMA4 and TgRON2L1 form a high-affinity binary complex and probe its overall architecture and underlying mechanism of assembly using crystal structures of TgAMA4 in the apo and TgRON2L1D3 bound forms. Finally, we show proof of principle that TgAMA4 and TgRON2L1 form a functional pairing capable of supporting host-cell invasion. Collectively, our study reveals exceptional molecular diversity at the parasite–host-cell interface that we discuss in the context of the unique invasion barriers encountered by the sporozoite.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号